# Statistical and logical methods for property checking

##### By: Daca, Przemyslaw

Material type: TextPublisher: IST Austria 2017Online resources: Click here to access onlineItem type | Current location | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|

Book | Library | Available | AT-ISTA#001359 |

Thesis

Abstract

Acknowledgments

List of Publications

1 Introduction

2 Preliminaries

3 Statistical model checking for unbounded temporal properties

4 Linear distances between Markov chains

5 Qualitative analysis of probabilistic systems

6 Array folds logic

7 Formal testing: A brief summary

8 Conclusion

Bibliography

This dissertation concerns the automatic verification of probabilistic systems and programs with arrays by statistical and logical methods. Although statistical and logical methods are different in nature, we show that they can be successfully combined for system analysis. In the first part of the dissertation we present a new statistical algorithm for the verification of probabilistic systems with respect to unbounded properties, including linear temporal logic. Our algorithm often performs faster than the previous approaches, and at the same time requires less information about the system. In addition, our method can be generalized to unbounded quantitative properties such as mean-payoff bounds. In the second part, we introduce two techniques for comparing probabilistic systems. Probabilistic systems are typically compared using the notion of equivalence, which requires the systems to have the equal probability of all behaviors. However, this notion is often too strict, since probabilities are typically only empirically estimated, and any imprecision may break the relation between processes. On the one hand, we propose to replace the Boolean notion of equivalence by a quantitative distance of similarity. For this purpose, we introduce a statistical framework for estimating distances between Markov chains based on their simulation runs, and we investigate which distances can be approximated in our framework. On the other hand, we propose to compare systems with respect to a new qualitative logic, which expresses that behaviors occur with probability one or a positive probability. This qualitative analysis is robust with respect to modeling errors and applicable to many domains. In the last part, we present a new quantifier-free logic for integer arrays, which allows us to express counting. Counting properties are prevalent in array-manipulating programs, however they cannot be expressed in the quantified fragments of the theory of arrays. We present a decision procedure for our logic, and provide several complexity results.

There are no comments for this item.