Introduction to Hamiltonian Dynamical Systems and the N-Body Problem [electronic resource] / by Kenneth Meyer, Glen Hall, Dan Offin.

By: Meyer, Kenneth [author.]
Contributor(s): Hall, Glen [author.] | Offin, Dan [author.] | SpringerLink (Online service)
Material type: TextTextSeries: Applied Mathematical Sciences: 90Publisher: New York, NY : Springer New York, 2009Description: XIII, 399 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9780387097244Subject(s): Mathematics | Mathematical analysis | Analysis (Mathematics) | Dynamics | Ergodic theory | Physics | Mathematics | Dynamical Systems and Ergodic Theory | Theoretical, Mathematical and Computational Physics | AnalysisAdditional physical formats: Printed edition:: No titleDDC classification: 515.39 | 515.48 LOC classification: QA313Online resources: Click here to access online
Contents:
Hamiltonian Systems -- Equations of Celestial Mechanics -- Linear Hamiltonian Systems -- Topics in Linear Theory -- Exterior Algebra and Differential Forms -- Symplectic Transformations -- Special Coordinates -- Geometric Theory -- Continuation of Solutions -- Normal Forms -- Bifurcations of Periodic Orbits -- Variational Techniques -- Stability and KAM Theory -- Twist Maps and Invariant Circle.
In: Springer eBooksSummary: This text grew out of graduate level courses in mathematics, engineering and physics given at several universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. Topics covered include a detailed discussion of linear Hamiltonian systems, an introduction to variational calculus and the Maslov index, the basics of the symplectic group, an introduction to reduction, applications of Poincaré's continuation to periodic solutions, the use of normal forms, applications of fixed point theorems and KAM theory. There is a special chapter devoted to finding symmetric periodic solutions by calculus of variations methods. The main examples treated in this text are the N-body problem and various specialized problems like the restricted three-body problem. The theory of the N-body problem is used to illustrate the general theory. Some of the topics covered are the classical integrals and reduction, central configurations, the existence of periodic solutions by continuation and variational methods, stability and instability of the Lagrange triangular point. Ken Meyer is an emeritus professor at the University of Cincinnati, Glen Hall is an associate professor at Boston University, and Dan Offin is a professor at Queen's University.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

Hamiltonian Systems -- Equations of Celestial Mechanics -- Linear Hamiltonian Systems -- Topics in Linear Theory -- Exterior Algebra and Differential Forms -- Symplectic Transformations -- Special Coordinates -- Geometric Theory -- Continuation of Solutions -- Normal Forms -- Bifurcations of Periodic Orbits -- Variational Techniques -- Stability and KAM Theory -- Twist Maps and Invariant Circle.

This text grew out of graduate level courses in mathematics, engineering and physics given at several universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. Topics covered include a detailed discussion of linear Hamiltonian systems, an introduction to variational calculus and the Maslov index, the basics of the symplectic group, an introduction to reduction, applications of Poincaré's continuation to periodic solutions, the use of normal forms, applications of fixed point theorems and KAM theory. There is a special chapter devoted to finding symmetric periodic solutions by calculus of variations methods. The main examples treated in this text are the N-body problem and various specialized problems like the restricted three-body problem. The theory of the N-body problem is used to illustrate the general theory. Some of the topics covered are the classical integrals and reduction, central configurations, the existence of periodic solutions by continuation and variational methods, stability and instability of the Lagrange triangular point. Ken Meyer is an emeritus professor at the University of Cincinnati, Glen Hall is an associate professor at Boston University, and Dan Offin is a professor at Queen's University.

There are no comments for this item.

to post a comment.

Other editions of this work

Edinburgh LCF : by Gordon, Michael J. C., ©1979
Edinburgh LCF : by Gordon, Michael J. C., ©1979

Powered by Koha