Least-Squares Finite Element Methods [electronic resource] / by Max D. Gunzburger, Pavel B. Bochev.

By: Gunzburger, Max D [author.]
Contributor(s): Bochev, Pavel B [author.] | SpringerLink (Online service)
Material type: TextTextSeries: Applied Mathematical Sciences: 166Publisher: New York, NY : Springer New York, 2009Description: XXII, 660 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9780387689227Subject(s): Mathematics | Mathematical analysis | Analysis (Mathematics) | Computer mathematics | Numerical analysis | Calculus of variations | Applied mathematics | Engineering mathematics | Fluid mechanics | Mathematics | Numerical Analysis | Analysis | Appl.Mathematics/Computational Methods of Engineering | Computational Mathematics and Numerical Analysis | Calculus of Variations and Optimal Control; Optimization | Engineering Fluid DynamicsAdditional physical formats: Printed edition:: No titleDDC classification: 518 LOC classification: QA297-299.4Online resources: Click here to access online
Contents:
Survey of Variational Principles and Associated Finite Element Methods. -- Classical Variational Methods -- Alternative Variational Formulations -- Abstract Theory of Least-Squares Finite Element Methods -- Mathematical Foundations of Least-Squares Finite Element Methods -- The Agmon#x2013;Douglis#x2013;Nirenberg Setting for Least-Squares Finite Element Methods -- Least-Squares Finite Element Methods for Elliptic Problems -- Scalar Elliptic Equations -- Vector Elliptic Equations -- The Stokes Equations -- Least-Squares Finite Element Methods for Other Settings -- The Navier#x2013;Stokes Equations -- Parabolic Partial Differential Equations -- Hyperbolic Partial Differential Equations -- Control and Optimization Problems -- Variations on Least-Squares Finite Element Methods -- Supplementary Material -- Analysis Tools -- Compatible Finite Element Spaces -- Linear Operator Equations in Hilbert Spaces -- The Agmon#x2013;Douglis#x2013;Nirenberg Theory and Verifying its Assumptions.
In: Springer eBooksSummary: The book examines theoretical and computational aspects of least-squares finite element methods(LSFEMs) for partial differential equations (PDEs) arising in key science and engineering applications. It is intended for mathematicians, scientists, and engineers interested in either or both the theory and practice associated with the numerical solution of PDEs. The first part looks at strengths and weaknesses of classical variational principles, reviews alternative variational formulations, and offers a glimpse at the main concepts that enter into the formulation of LSFEMs. Subsequent parts introduce mathematical frameworks for LSFEMs and their analysis, apply the frameworks to concrete PDEs, and discuss computational properties of resulting LSFEMs. Also included are recent advances such as compatible LSFEMs, negative-norm LSFEMs, and LSFEMs for optimal control and design problems. Numerical examples illustrate key aspects of the theory ranging from the importance of norm-equivalence to connections between compatible LSFEMs and classical-Galerkin and mixed-Galerkin methods. Pavel Bochev is a Distinguished Member of the Technical Staff at Sandia National Laboratories with research interests in compatible discretizations for PDEs, multiphysics problems, and scientific computing. Max Gunzburger is Frances Eppes Professor of Scientific Computing and Mathematics at Florida State University and recipient of the W.T. and Idelia Reid Prize in Mathematics from the Society for Industrial and Applied Mathematics. .
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

Survey of Variational Principles and Associated Finite Element Methods. -- Classical Variational Methods -- Alternative Variational Formulations -- Abstract Theory of Least-Squares Finite Element Methods -- Mathematical Foundations of Least-Squares Finite Element Methods -- The Agmon#x2013;Douglis#x2013;Nirenberg Setting for Least-Squares Finite Element Methods -- Least-Squares Finite Element Methods for Elliptic Problems -- Scalar Elliptic Equations -- Vector Elliptic Equations -- The Stokes Equations -- Least-Squares Finite Element Methods for Other Settings -- The Navier#x2013;Stokes Equations -- Parabolic Partial Differential Equations -- Hyperbolic Partial Differential Equations -- Control and Optimization Problems -- Variations on Least-Squares Finite Element Methods -- Supplementary Material -- Analysis Tools -- Compatible Finite Element Spaces -- Linear Operator Equations in Hilbert Spaces -- The Agmon#x2013;Douglis#x2013;Nirenberg Theory and Verifying its Assumptions.

The book examines theoretical and computational aspects of least-squares finite element methods(LSFEMs) for partial differential equations (PDEs) arising in key science and engineering applications. It is intended for mathematicians, scientists, and engineers interested in either or both the theory and practice associated with the numerical solution of PDEs. The first part looks at strengths and weaknesses of classical variational principles, reviews alternative variational formulations, and offers a glimpse at the main concepts that enter into the formulation of LSFEMs. Subsequent parts introduce mathematical frameworks for LSFEMs and their analysis, apply the frameworks to concrete PDEs, and discuss computational properties of resulting LSFEMs. Also included are recent advances such as compatible LSFEMs, negative-norm LSFEMs, and LSFEMs for optimal control and design problems. Numerical examples illustrate key aspects of the theory ranging from the importance of norm-equivalence to connections between compatible LSFEMs and classical-Galerkin and mixed-Galerkin methods. Pavel Bochev is a Distinguished Member of the Technical Staff at Sandia National Laboratories with research interests in compatible discretizations for PDEs, multiphysics problems, and scientific computing. Max Gunzburger is Frances Eppes Professor of Scientific Computing and Mathematics at Florida State University and recipient of the W.T. and Idelia Reid Prize in Mathematics from the Society for Industrial and Applied Mathematics. .

There are no comments for this item.

to post a comment.

Powered by Koha