V-Invex Functions and Vector Optimization [electronic resource] / by Shashi Kant Mishra, Shouyang Wang, Kin Keung Lai.

By: Mishra, Shashi Kant [author.]
Contributor(s): Wang, Shouyang [author.] | Lai, Kin Keung [author.] | SpringerLink (Online service)
Material type: TextTextSeries: Optimization and Its Applications: 14Publisher: Boston, MA : Springer US, 2008Description: VIII, 164 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9780387754468Subject(s): Mathematics | Management | Industrial management | Operations research | Decision making | Applied mathematics | Engineering mathematics | Mathematical optimization | Calculus of variations | Management science | Mathematics | Optimization | Applications of Mathematics | Calculus of Variations and Optimal Control; Optimization | Operation Research/Decision Theory | Operations Research, Management Science | Innovation/Technology ManagementAdditional physical formats: Printed edition:: No titleDDC classification: 519.6 LOC classification: QA402.5-402.6Online resources: Click here to access online
Contents:
General Introduction -- V-Invexity in Nonlinear Multiobjective Programming -- Multiobjective Fractional Programming -- Multiobjective Nonsmooth Programming -- Composite Multiobjective Nonsmooth Programming -- Continuous-time Programming.
In: Springer eBooksSummary: V-INVEX FUNCTIONS AND VECTOR OPTIMIZATION summarizes and synthesizes an aspect of research work that has been done in the area of Generalized Convexity over the past several decades. Specifically, the book focuses on V-invex functions in vector optimization that have grown out of the work of Jeyakumar and Mond in the 1990’s. V-invex functions are areas in which there has been much interest because it allows researchers and practitioners to address and provide better solutions to problems that are nonlinear, multi-objective, fractional, and continuous in nature. Hence, V-invex functions have permitted work on a whole new class of vector optimization applications. There has been considerable work on vector optimization by some highly distinguished researchers including Kuhn, Tucker, Geoffrion, Mangasarian, Von Neuman, Schaiible, Ziemba, etc. The authors have integrated this related research into their book and demonstrate the wide context from which the area has grown and continues to grow. The result is a well-synthesized, accessible, and usable treatment for students, researchers, and practitioners in the areas of OR, optimization, applied mathematics, engineering, and their work relating to a wide range of problems which include financial institutions, logistics, transportation, traffic management, etc.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

General Introduction -- V-Invexity in Nonlinear Multiobjective Programming -- Multiobjective Fractional Programming -- Multiobjective Nonsmooth Programming -- Composite Multiobjective Nonsmooth Programming -- Continuous-time Programming.

V-INVEX FUNCTIONS AND VECTOR OPTIMIZATION summarizes and synthesizes an aspect of research work that has been done in the area of Generalized Convexity over the past several decades. Specifically, the book focuses on V-invex functions in vector optimization that have grown out of the work of Jeyakumar and Mond in the 1990’s. V-invex functions are areas in which there has been much interest because it allows researchers and practitioners to address and provide better solutions to problems that are nonlinear, multi-objective, fractional, and continuous in nature. Hence, V-invex functions have permitted work on a whole new class of vector optimization applications. There has been considerable work on vector optimization by some highly distinguished researchers including Kuhn, Tucker, Geoffrion, Mangasarian, Von Neuman, Schaiible, Ziemba, etc. The authors have integrated this related research into their book and demonstrate the wide context from which the area has grown and continues to grow. The result is a well-synthesized, accessible, and usable treatment for students, researchers, and practitioners in the areas of OR, optimization, applied mathematics, engineering, and their work relating to a wide range of problems which include financial institutions, logistics, transportation, traffic management, etc.

There are no comments for this item.

to post a comment.

Powered by Koha