Mathematical Foundations of Neuroscience [electronic resource] / by G. Bard Ermentrout, David H. Terman.

By: Ermentrout, G. Bard [author.]
Contributor(s): Terman, David H [author.] | SpringerLink (Online service)
Material type: TextTextSeries: Interdisciplinary Applied Mathematics: 35Publisher: New York, NY : Springer New York : Imprint: Springer, 2010Description: XV, 422 p. 38 illus. in color. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9780387877082Subject(s): Mathematics | Neurosciences | Neurobiology | Biomathematics | Mathematics | Mathematical and Computational Biology | Neurobiology | NeurosciencesAdditional physical formats: Printed edition:: No titleDDC classification: 570.285 LOC classification: QH323.5QH324.2-324.25Online resources: Click here to access online
Contents:
The Hodgkin–Huxley Equations -- Dendrites -- Dynamics -- The Variety of Channels -- Bursting Oscillations -- Propagating Action Potentials -- Synaptic Channels -- Neural Oscillators: Weak Coupling -- Neuronal Networks: Fast/Slow Analysis -- Noise -- Firing Rate Models -- Spatially Distributed Networks.
In: Springer eBooksSummary: This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

The Hodgkin–Huxley Equations -- Dendrites -- Dynamics -- The Variety of Channels -- Bursting Oscillations -- Propagating Action Potentials -- Synaptic Channels -- Neural Oscillators: Weak Coupling -- Neuronal Networks: Fast/Slow Analysis -- Noise -- Firing Rate Models -- Spatially Distributed Networks.

This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.

There are no comments for this item.

to post a comment.

Powered by Koha