Spatial Statistics and Modeling [electronic resource] / by Carlo Gaetan, Xavier Guyon.

By: Gaetan, Carlo [author.]
Contributor(s): Guyon, Xavier [author.] | SpringerLink (Online service)
Material type: TextTextSeries: Springer Series in Statistics: Publisher: New York, NY : Springer New York, 2010Description: XIV, 302 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9780387922577Subject(s): Mathematics | Earth sciences | Probabilities | Statistics | Environmental sciences | Econometrics | Mathematics | Probability Theory and Stochastic Processes | Econometrics | Statistical Theory and Methods | Earth Sciences, general | Math. Appl. in Environmental ScienceAdditional physical formats: Printed edition:: No titleDDC classification: 519.2 LOC classification: QA273.A1-274.9QA274-274.9Online resources: Click here to access online
Contents:
Second-order spatial models and geostatistics -- Gibbs-Markov random fields on networks -- Spatial point processes -- Simulation of spatial models -- Statistics for spatial models.
In: Springer eBooksSummary: Spatial statistics are useful in subjects as diverse as climatology, ecology, economics, environmental and earth sciences, epidemiology, image analysis and more. This book covers the best-known spatial models for three types of spatial data: geostatistical data (stationarity, intrinsic models, variograms, spatial regression and space-time models), areal data (Gibbs-Markov fields and spatial auto-regression) and point pattern data (Poisson, Cox, Gibbs and Markov point processes). The level is relatively advanced, and the presentation concise but complete. The most important statistical methods and their asymptotic properties are described, including estimation in geostatistics, autocorrelation and second-order statistics, maximum likelihood methods, approximate inference using the pseudo-likelihood or Monte-Carlo simulations, statistics for point processes and Bayesian hierarchical models. A chapter is devoted to Markov Chain Monte Carlo simulation (Gibbs sampler, Metropolis-Hastings algorithms and exact simulation). A large number of real examples are studied with R, and each chapter ends with a set of theoretical and applied exercises. While a foundation in probability and mathematical statistics is assumed, three appendices introduce some necessary background. The book is accessible to senior undergraduate students with a solid math background and Ph.D. students in statistics. Furthermore, experienced statisticians and researchers in the above-mentioned fields will find the book valuable as a mathematically sound reference. This book is the English translation of Modélisation et Statistique Spatiales published by Springer in the series Mathématiques & Applications, a series established by Société de Mathématiques Appliquées et Industrielles (SMAI). Carlo Gaetan is Associate Professor of Statistics in the Department of Statistics at the Ca' Foscari University of Venice. Xavier Guyon is Professor Emeritus at the University of Paris 1 Panthéon-Sorbonne. He is author of a Springer monograph on random fields.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

Second-order spatial models and geostatistics -- Gibbs-Markov random fields on networks -- Spatial point processes -- Simulation of spatial models -- Statistics for spatial models.

Spatial statistics are useful in subjects as diverse as climatology, ecology, economics, environmental and earth sciences, epidemiology, image analysis and more. This book covers the best-known spatial models for three types of spatial data: geostatistical data (stationarity, intrinsic models, variograms, spatial regression and space-time models), areal data (Gibbs-Markov fields and spatial auto-regression) and point pattern data (Poisson, Cox, Gibbs and Markov point processes). The level is relatively advanced, and the presentation concise but complete. The most important statistical methods and their asymptotic properties are described, including estimation in geostatistics, autocorrelation and second-order statistics, maximum likelihood methods, approximate inference using the pseudo-likelihood or Monte-Carlo simulations, statistics for point processes and Bayesian hierarchical models. A chapter is devoted to Markov Chain Monte Carlo simulation (Gibbs sampler, Metropolis-Hastings algorithms and exact simulation). A large number of real examples are studied with R, and each chapter ends with a set of theoretical and applied exercises. While a foundation in probability and mathematical statistics is assumed, three appendices introduce some necessary background. The book is accessible to senior undergraduate students with a solid math background and Ph.D. students in statistics. Furthermore, experienced statisticians and researchers in the above-mentioned fields will find the book valuable as a mathematically sound reference. This book is the English translation of Modélisation et Statistique Spatiales published by Springer in the series Mathématiques & Applications, a series established by Société de Mathématiques Appliquées et Industrielles (SMAI). Carlo Gaetan is Associate Professor of Statistics in the Department of Statistics at the Ca' Foscari University of Venice. Xavier Guyon is Professor Emeritus at the University of Paris 1 Panthéon-Sorbonne. He is author of a Springer monograph on random fields.

There are no comments for this item.

to post a comment.

Powered by Koha