# A History of Abstract Algebra [electronic resource] / edited by Israel Kleiner.

##### Contributor(s): Kleiner, Israel [editor.] | SpringerLink (Online service)

Material type: TextPublisher: Boston, MA : Birkhäuser Boston, 2007Description: XVI, 168 p. 24 illus. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9780817646851Subject(s): Mathematics | Algebra | Commutative algebra | Commutative rings | Field theory (Physics) | Group theory | Matrix theory | History | Mathematics | Algebra | History of Mathematical Sciences | Group Theory and Generalizations | Commutative Rings and Algebras | Field Theory and Polynomials | Linear and Multilinear Algebras, Matrix TheoryAdditional physical formats: Printed edition:: No titleDDC classification: 512 LOC classification: QA150-272Online resources: Click here to access onlineItem type | Current location | Collection | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|

eBook |
e-Library
Electronic Book@IST |
EBook | Available |

History of Classical Algebra -- History of Group Theory -- History of Ring Theory -- History of Field Theory -- History of Linear Algebra -- Emmy Noether and the Advent of Abstract Algebra -- A Course in Abstract Algebra Inspired by History -- Biographies of Selected Mathematicians.

Prior to the nineteenth century, algebra meant the study of the solution of polynomial equations. By the twentieth century algebra came to encompass the study of abstract, axiomatic systems such as groups, rings, and fields. This presentation provides an account of the intellectual lineage behind many of the basic concepts, results, and theories of abstract algebra. The development of abstract algebra was propelled by the need for new tools to address certain classical problems that appeared unsolvable by classical means. A major theme of the approach in this book is to show how abstract algebra has arisen in attempts to solve some of these classical problems, providing context from which the reader may gain a deeper appreciation of the mathematics involved. Key features: * Begins with an overview of classical algebra * Contains separate chapters on aspects of the development of groups, rings, and fields * Examines the evolution of linear algebra as it relates to other elements of abstract algebra * Highlights the lives and works of six notables: Cayley, Dedekind, Galois, Gauss, Hamilton, and especially the pioneering work of Emmy Noether * Offers suggestions to instructors on ways of integrating the history of abstract algebra into their teaching * Each chapter concludes with extensive references to the relevant literature Mathematics instructors, algebraists, and historians of science will find the work a valuable reference. The book may also serve as a supplemental text for courses in abstract algebra or the history of mathematics.

There are no comments for this item.