Geometric Data Analysis [electronic resource] : From Correspondence Analysis to Structured Data Analysis / by Brigitte Le Roux, Henry Rouanet.

By: Roux, Brigitte Le [author.]
Contributor(s): Rouanet, Henry [author.] | SpringerLink (Online service)
Material type: TextTextPublisher: Dordrecht : Springer Netherlands, 2005Description: XI, 475 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9781402022364Subject(s): Mathematics | Probabilities | Computational linguistics | Statistics | Economics | Management science | Economic theory | Mathematics | Probability Theory and Stochastic Processes | Economics, general | Statistics, general | Economic Theory/Quantitative Economics/Mathematical Methods | Statistics for Life Sciences, Medicine, Health Sciences | Computational LinguisticsAdditional physical formats: Printed edition:: No titleDDC classification: 519.2 LOC classification: QA273.A1-274.9QA274-274.9Online resources: Click here to access online
Contents:
Overview of Geometric Data Analysis (‘Overview’) -- Correspondence Analysis -- Euclidean Cloud -- Principal Component Analysis -- Multiple Correspondence Analysis (MCA) -- Structured Data Analysis -- Stability of a Euclidean Cloud -- Inductive Data Analysis -- Research Case Studies -- Mathematical Bases.
In: Springer eBooksSummary: Geometric Data Analysis (GDA) is the name suggested by P. Suppes (Stanford University) to designate the approach to Multivariate Statistics initiated by Benzécri as Correspondence Analysis, an approach that has become more and more used and appreciated over the years. This book presents the full formalization of GDA in terms of linear algebra - the most original and far-reaching consequential feature of the approach - and shows also how to integrate the standard statistical tools such as Analysis of Variance, including Bayesian methods. Chapter 9, Research Case Studies, is nearly a book in itself; it presents the methodology in action on three extensive applications, one for medicine, one from political science, and one from education (data borrowed from the Stanford computer-based Educational Program for Gifted Youth ). Thus the readership of the book concerns both mathematicians interested in the applications of mathematics, and researchers willing to master an exceptionally powerful approach of statistical data analysis.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

Overview of Geometric Data Analysis (‘Overview’) -- Correspondence Analysis -- Euclidean Cloud -- Principal Component Analysis -- Multiple Correspondence Analysis (MCA) -- Structured Data Analysis -- Stability of a Euclidean Cloud -- Inductive Data Analysis -- Research Case Studies -- Mathematical Bases.

Geometric Data Analysis (GDA) is the name suggested by P. Suppes (Stanford University) to designate the approach to Multivariate Statistics initiated by Benzécri as Correspondence Analysis, an approach that has become more and more used and appreciated over the years. This book presents the full formalization of GDA in terms of linear algebra - the most original and far-reaching consequential feature of the approach - and shows also how to integrate the standard statistical tools such as Analysis of Variance, including Bayesian methods. Chapter 9, Research Case Studies, is nearly a book in itself; it presents the methodology in action on three extensive applications, one for medicine, one from political science, and one from education (data borrowed from the Stanford computer-based Educational Program for Gifted Youth ). Thus the readership of the book concerns both mathematicians interested in the applications of mathematics, and researchers willing to master an exceptionally powerful approach of statistical data analysis.

There are no comments for this item.

to post a comment.

Powered by Koha