Graphs on Surfaces [electronic resource] : Dualities, Polynomials, and Knots / by Joanna A. Ellis-Monaghan, Iain Moffatt.

By: Ellis-Monaghan, Joanna A [author.]
Contributor(s): Moffatt, Iain [author.] | SpringerLink (Online service)
Material type: TextTextSeries: SpringerBriefs in Mathematics: Publisher: New York, NY : Springer New York : Imprint: Springer, 2013Description: XI, 139 p. 82 illus., 41 illus. in color. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9781461469711Subject(s): Mathematics | Topology | Algebraic topology | Graph theory | Mathematics | Graph Theory | Topology | Algebraic TopologyAdditional physical formats: Printed edition:: No titleDDC classification: 511.5 LOC classification: QA166-166.247Online resources: Click here to access online
Contents:
1. Embedded Graphs -- 2. Generalised Dualities -- 3. Twisted duality, cycle family graphs, and embedded graph equivalence -- 4. Interactions with Graph Polynomials -- 5. Applications to Knot Theory .- References -- Index .
In: Springer eBooksSummary: Graphs on Surfaces: Dualities, Polynomials, and Knots offers an accessible and comprehensive treatment of recent developments on generalized duals of graphs on surfaces, and their applications. The authors  illustrate the interdependency between duality, medial graphs and knots; how this interdependency is reflected in algebraic invariants of graphs and knots; and how it can be exploited to solve problems in graph and knot theory. Taking  a constructive approach, the authors emphasize how generalized duals and related ideas arise by localizing classical constructions, such as geometric duals and Tait graphs, and then removing artificial restrictions in these constructions to obtain full extensions of them to embedded graphs. The authors demonstrate the benefits of these generalizations to embedded graphs in chapters describing their applications to graph polynomials and knots.    Graphs on Surfaces: Dualities, Polynomials, and Knots  also provides a self-contained introduction to graphs on surfaces, generalized duals, topological graph polynomials, and knot polynomials that is accessible both to graph theorists and to knot theorists.  Directed at those with some familiarity with basic graph theory and knot theory, this book is appropriate for graduate students and researchers in either area. Because the area is advancing so rapidly, the authors give a comprehensive overview of the topic and include a robust bibliography, aiming to provide the reader with the necessary foundations to stay abreast of the field. The reader will come away from the text convinced of advantages of considering these higher genus analogues of constructions of plane and abstract graphs, and with a good understanding of how they arise.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

1. Embedded Graphs -- 2. Generalised Dualities -- 3. Twisted duality, cycle family graphs, and embedded graph equivalence -- 4. Interactions with Graph Polynomials -- 5. Applications to Knot Theory .- References -- Index .

Graphs on Surfaces: Dualities, Polynomials, and Knots offers an accessible and comprehensive treatment of recent developments on generalized duals of graphs on surfaces, and their applications. The authors  illustrate the interdependency between duality, medial graphs and knots; how this interdependency is reflected in algebraic invariants of graphs and knots; and how it can be exploited to solve problems in graph and knot theory. Taking  a constructive approach, the authors emphasize how generalized duals and related ideas arise by localizing classical constructions, such as geometric duals and Tait graphs, and then removing artificial restrictions in these constructions to obtain full extensions of them to embedded graphs. The authors demonstrate the benefits of these generalizations to embedded graphs in chapters describing their applications to graph polynomials and knots.    Graphs on Surfaces: Dualities, Polynomials, and Knots  also provides a self-contained introduction to graphs on surfaces, generalized duals, topological graph polynomials, and knot polynomials that is accessible both to graph theorists and to knot theorists.  Directed at those with some familiarity with basic graph theory and knot theory, this book is appropriate for graduate students and researchers in either area. Because the area is advancing so rapidly, the authors give a comprehensive overview of the topic and include a robust bibliography, aiming to provide the reader with the necessary foundations to stay abreast of the field. The reader will come away from the text convinced of advantages of considering these higher genus analogues of constructions of plane and abstract graphs, and with a good understanding of how they arise.

There are no comments for this item.

to post a comment.

Powered by Koha