Constrained Optimization and Optimal Control for Partial Differential Equations [electronic resource] / edited by Günter Leugering, Sebastian Engell, Andreas Griewank, Michael Hinze, Rolf Rannacher, Volker Schulz, Michael Ulbrich, Stefan Ulbrich.

Contributor(s): Leugering, Günter [editor.] | Engell, Sebastian [editor.] | Griewank, Andreas [editor.] | Hinze, Michael [editor.] | Rannacher, Rolf [editor.] | Schulz, Volker [editor.] | Ulbrich, Michael [editor.] | Ulbrich, Stefan [editor.] | SpringerLink (Online service)
Material type: TextTextSeries: International Series of Numerical Mathematics: 160Publisher: Basel : Springer Basel, 2012Description: XII, 624 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783034801331Subject(s): Mathematics | Partial differential equations | Computer mathematics | Mathematical optimization | Mathematics | Partial Differential Equations | Optimization | Computational Mathematics and Numerical AnalysisAdditional physical formats: Printed edition:: No titleDDC classification: 515.353 LOC classification: QA370-380Online resources: Click here to access online
Contents:
Introduction -- Constrained Optimization, Identification and Control -- Shape and Topology Optimization -- Model Reduction -- Discretization: Concepts and Analysis -- Applications.
In: Springer eBooksSummary: This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

Introduction -- Constrained Optimization, Identification and Control -- Shape and Topology Optimization -- Model Reduction -- Discretization: Concepts and Analysis -- Applications.

This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.

There are no comments for this item.

to post a comment.

Powered by Koha