Variable Lebesgue Spaces [electronic resource] : Foundations and Harmonic Analysis / by David V. Cruz-Uribe, Alberto Fiorenza.

By: Cruz-Uribe, David V [author.]
Contributor(s): Fiorenza, Alberto [author.] | SpringerLink (Online service)
Material type: TextTextSeries: Applied and Numerical Harmonic Analysis: Publisher: Basel : Springer Basel : Imprint: Birkhäuser, 2013Description: IX, 312 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783034805483Subject(s): Mathematics | Harmonic analysis | Functional analysis | Global analysis (Mathematics) | Manifolds (Mathematics) | Mathematics | Abstract Harmonic Analysis | Functional Analysis | Global Analysis and Analysis on ManifoldsAdditional physical formats: Printed edition:: No titleDDC classification: 515.785 LOC classification: QA403-403.3Online resources: Click here to access online
Contents:
 1 Introduction -- 2 Structure of Variable Lebesgue Spaces -- 3 The Hardy-Littlewood Maximal Operator.- 4 Beyond Log-Hölder Continuity -- 5 Extrapolation in the Variable Lebesgue Spaces -- 6 Basic Properties of Variable Sobolev Spaces -- Appendix: Open Problems -- Bibliography -- Symbol Index -- Author Index -- Subject Index.        .
In: Springer eBooksSummary: This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

 1 Introduction -- 2 Structure of Variable Lebesgue Spaces -- 3 The Hardy-Littlewood Maximal Operator.- 4 Beyond Log-Hölder Continuity -- 5 Extrapolation in the Variable Lebesgue Spaces -- 6 Basic Properties of Variable Sobolev Spaces -- Appendix: Open Problems -- Bibliography -- Symbol Index -- Author Index -- Subject Index.        .

This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces.

There are no comments for this item.

to post a comment.

Powered by Koha