Separable Type Representations of Matrices and Fast Algorithms [electronic resource] : Volume 2 Eigenvalue Method / by Yuli Eidelman, Israel Gohberg, Iulian Haimovici.

By: Eidelman, Yuli [author.]
Contributor(s): Gohberg, Israel [author.] | Haimovici, Iulian [author.] | SpringerLink (Online service)
Material type: TextTextSeries: Operator Theory: Advances and Applications: 235Publisher: Basel : Springer Basel : Imprint: Birkhäuser, 2014Description: XI, 359 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783034806121Subject(s): Mathematics | Matrix theory | Algebra | Numerical analysis | Mathematics | Linear and Multilinear Algebras, Matrix Theory | Numerical AnalysisAdditional physical formats: Printed edition:: No titleDDC classification: 512.5 LOC classification: QA184-205Online resources: Click here to access online
Contents:
Part 5. The eigenvalue structure of order one quasiseparable matrices -- 21. Quasiseparable of order one matrices. Characteristic polynomials -- 22. Eigenvalues with geometric multiplicity one -- 23. Kernels of quasiseparable of order one matrices -- 24. Multiple eigenvalues -- Part 6. Divide and conquer method for eigenproblems -- 25. Divide step -- 26. Conquer step and rational matrix functions eigenproblem -- 27. Complete algorithm for Hermitian matrices -- 28. Complete algorithm for unitary Hessenberg matrices -- Part 7. Algorithms for qr iterations and for reduction to Hessenberg form -- 29. The QR iteration method for eigenvalues -- 30. The reduction to Hessenberg form -- 31. The implicit QR iteration method for eigenvalues of upper Hessenberg matrices -- Part 8. QR iterations for companion matrices -- 32. Companion and unitary matrices -- 33. Explicit methods -- 34. Implicit methods with compression -- 35. The factorization based implicit method -- 36. Implicit algorithms based on the QR representation -- Bibliography.  .
In: Springer eBooksSummary: This two-volume work presents a systematic theoretical and computational study of several types of generalizations of separable matrices. The primary focus is on fast algorithms (many of linear complexity) for matrices in semiseparable, quasiseparable, band and companion form. The work examines algorithms of multiplication, inversion and description of eigenstructure and includes a wealth of illustrative examples throughout the different chapters. The second volume, consisting of four parts, addresses the eigenvalue problem for matrices with quasiseparable structure and applications to the polynomial root finding problem. In the first part the properties of the characteristic polynomials of principal leading submatrices, the structure of eigenspaces and the basic methods for computing eigenvalues are studied in detail for matrices with quasiseparable representation of the first order. The second part is devoted to the divide and conquer method, with the main algorithms also being derived for matrices with quasiseparable representation of order one. The QR iteration method for some classes of matrices with quasiseparable representations of any order is studied in the third part. This method is then used in the last part in order to provide a fast solver for the polynomial root finding problem. The work is based mostly on results obtained by the authors and their coauthors. Due to its many significant applications and accessible style, the text will be a valuable resource for engineers, scientists, numerical analysts, computer scientists and mathematicians alike.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

Part 5. The eigenvalue structure of order one quasiseparable matrices -- 21. Quasiseparable of order one matrices. Characteristic polynomials -- 22. Eigenvalues with geometric multiplicity one -- 23. Kernels of quasiseparable of order one matrices -- 24. Multiple eigenvalues -- Part 6. Divide and conquer method for eigenproblems -- 25. Divide step -- 26. Conquer step and rational matrix functions eigenproblem -- 27. Complete algorithm for Hermitian matrices -- 28. Complete algorithm for unitary Hessenberg matrices -- Part 7. Algorithms for qr iterations and for reduction to Hessenberg form -- 29. The QR iteration method for eigenvalues -- 30. The reduction to Hessenberg form -- 31. The implicit QR iteration method for eigenvalues of upper Hessenberg matrices -- Part 8. QR iterations for companion matrices -- 32. Companion and unitary matrices -- 33. Explicit methods -- 34. Implicit methods with compression -- 35. The factorization based implicit method -- 36. Implicit algorithms based on the QR representation -- Bibliography.  .

This two-volume work presents a systematic theoretical and computational study of several types of generalizations of separable matrices. The primary focus is on fast algorithms (many of linear complexity) for matrices in semiseparable, quasiseparable, band and companion form. The work examines algorithms of multiplication, inversion and description of eigenstructure and includes a wealth of illustrative examples throughout the different chapters. The second volume, consisting of four parts, addresses the eigenvalue problem for matrices with quasiseparable structure and applications to the polynomial root finding problem. In the first part the properties of the characteristic polynomials of principal leading submatrices, the structure of eigenspaces and the basic methods for computing eigenvalues are studied in detail for matrices with quasiseparable representation of the first order. The second part is devoted to the divide and conquer method, with the main algorithms also being derived for matrices with quasiseparable representation of order one. The QR iteration method for some classes of matrices with quasiseparable representations of any order is studied in the third part. This method is then used in the last part in order to provide a fast solver for the polynomial root finding problem. The work is based mostly on results obtained by the authors and their coauthors. Due to its many significant applications and accessible style, the text will be a valuable resource for engineers, scientists, numerical analysts, computer scientists and mathematicians alike.

There are no comments for this item.

to post a comment.

Powered by Koha