Developments and Retrospectives in Lie Theory [electronic resource] : Algebraic Methods / edited by Geoffrey Mason, Ivan Penkov, Joseph A. Wolf.

Contributor(s): Mason, Geoffrey [editor.] | Penkov, Ivan [editor.] | Wolf, Joseph A [editor.] | SpringerLink (Online service)
Material type: TextTextSeries: Developments in Mathematics: 38Publisher: Cham : Springer International Publishing : Imprint: Springer, 2014Description: X, 397 p. 85 illus. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783319098043Subject(s): Mathematics | Algebraic geometry | Topological groups | Lie groups | Number theory | Mathematics | Topological Groups, Lie Groups | Algebraic Geometry | Number TheoryAdditional physical formats: Printed edition:: No titleDDC classification: 512.55 | 512.482 LOC classification: QA252.3QA387Online resources: Click here to access online
Contents:
Group gradings on Lie algebras with applications to geometry. I (Y. Bahturin, M. Goze, E. Remm) -- Bounding the dimensions of rational cohomology groups (C.P. Bendel, B.D. Boe, C.M. Drupieski, D.K. Nakano, B.J. Parshall, C. Pillen, C.B. Wright) -- Representations of the general linear Lie superalgebra in the BGG Category {$\mathcal O$} (J. Brundan) -- Three results on representations of Mackey Lie algebras (A. Chirvasitu) -- Free field realizations of the Date–Jimbo–Kashiwara–Miwa algebra (B. Cox, V. Futorny, R.A. Martins) -- The deformation complex is a homotopy invariant of a homotopy algebra (V. Dolgushev, T. Willwacher) -- Invariants of Artinian Gorenstein algebras and isolated hypersurface singularities (M.G. Eastwood, A.V. Isaev) -- Generalized loop modules for affine Kac–Moody algebras (V. Futorny, I. Kashuba) -- Twisted localization of weight modules (D. Grantcharov) -- Dirac cohomology and generalization of classical branching rules (J.-S. Huang) -- Cleft extensions and quotients of twisted quantum doubles (G. Mason, S.-H. Ng) -- On the structure of ${\Bbb N}$-graded vertex operator algebras (G. Mason, G. Yamskulna) -- Variations on a Casselman–Osborne theme (D. Miličić) -- Tensor representations of Mackey Lie algebras and their dense subalgebras (I. Penkov, V. Serganova) -- Algebraic methods in the theory of generalized Harish–Chandra modules (I. Penkov, G. Zuckerman) -- On exceptional vertex operator (super) algebras (M.P. Tuite, H.D. Van) -- The cubic, the quartic, and the exceptional group $G_2$ (A. van Groningen, J.F. Willenbring).
In: Springer eBooksSummary: This volume reviews and updates a prominent series of workshops in representation/Lie theory, and reflects the widespread influence of those  workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, and mathematical physics.  Many of the contributors have had leading roles in both the classical and modern developments of Lie theory and its applications. This Work, entitled Developments and Retrospectives in Lie Theory, and comprising 26 articles, is organized in two volumes: Algebraic Methods and Geometric and Analytic Methods. This is the Algebraic Methods volume. The Lie Theory Workshop series, founded by Joe Wolf and Ivan Penkov and joined shortly thereafter by Geoff Mason, has been running for over two decades. Travel to the workshops has usually been supported by the NSF, and local universities have provided hospitality. The workshop talks have been seminal in describing new perspectives in the field covering broad areas of current research.  Most of the workshops have taken place at leading public and private universities in California, though on occasion workshops have taken place in Oregon, Louisiana and Utah.  Experts in representation theory/Lie theory from various parts of  the Americas, Europe and Asia have given talks at these meetings. The workshop series is robust, and the meetings continue on a quarterly basis.  Contributors to the Algebraic Methods volume: Y. Bahturin, C. P. Bendel, B.D. Boe, J. Brundan, A. Chirvasitu, B. Cox, V. Dolgushev, C.M. Drupieski, M.G. Eastwood, V. Futorny, D. Grantcharov, A. van Groningen, M. Goze, J.-S. Huang, A.V. Isaev, I. Kashuba, R.A. Martins, G. Mason, D. Miličić, D.K., Nakano, S.-H. Ng, B.J. Parshall, I. Penkov, C. Pillen, E. Remm, V. Serganova, M.P. Tuite, H.D. Van, J.F. Willenbring, T. Willwacher, C.B. Wright, G. Yamskulna, G. Zuckerman.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

Group gradings on Lie algebras with applications to geometry. I (Y. Bahturin, M. Goze, E. Remm) -- Bounding the dimensions of rational cohomology groups (C.P. Bendel, B.D. Boe, C.M. Drupieski, D.K. Nakano, B.J. Parshall, C. Pillen, C.B. Wright) -- Representations of the general linear Lie superalgebra in the BGG Category {$\mathcal O$} (J. Brundan) -- Three results on representations of Mackey Lie algebras (A. Chirvasitu) -- Free field realizations of the Date–Jimbo–Kashiwara–Miwa algebra (B. Cox, V. Futorny, R.A. Martins) -- The deformation complex is a homotopy invariant of a homotopy algebra (V. Dolgushev, T. Willwacher) -- Invariants of Artinian Gorenstein algebras and isolated hypersurface singularities (M.G. Eastwood, A.V. Isaev) -- Generalized loop modules for affine Kac–Moody algebras (V. Futorny, I. Kashuba) -- Twisted localization of weight modules (D. Grantcharov) -- Dirac cohomology and generalization of classical branching rules (J.-S. Huang) -- Cleft extensions and quotients of twisted quantum doubles (G. Mason, S.-H. Ng) -- On the structure of ${\Bbb N}$-graded vertex operator algebras (G. Mason, G. Yamskulna) -- Variations on a Casselman–Osborne theme (D. Miličić) -- Tensor representations of Mackey Lie algebras and their dense subalgebras (I. Penkov, V. Serganova) -- Algebraic methods in the theory of generalized Harish–Chandra modules (I. Penkov, G. Zuckerman) -- On exceptional vertex operator (super) algebras (M.P. Tuite, H.D. Van) -- The cubic, the quartic, and the exceptional group $G_2$ (A. van Groningen, J.F. Willenbring).

This volume reviews and updates a prominent series of workshops in representation/Lie theory, and reflects the widespread influence of those  workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, and mathematical physics.  Many of the contributors have had leading roles in both the classical and modern developments of Lie theory and its applications. This Work, entitled Developments and Retrospectives in Lie Theory, and comprising 26 articles, is organized in two volumes: Algebraic Methods and Geometric and Analytic Methods. This is the Algebraic Methods volume. The Lie Theory Workshop series, founded by Joe Wolf and Ivan Penkov and joined shortly thereafter by Geoff Mason, has been running for over two decades. Travel to the workshops has usually been supported by the NSF, and local universities have provided hospitality. The workshop talks have been seminal in describing new perspectives in the field covering broad areas of current research.  Most of the workshops have taken place at leading public and private universities in California, though on occasion workshops have taken place in Oregon, Louisiana and Utah.  Experts in representation theory/Lie theory from various parts of  the Americas, Europe and Asia have given talks at these meetings. The workshop series is robust, and the meetings continue on a quarterly basis.  Contributors to the Algebraic Methods volume: Y. Bahturin, C. P. Bendel, B.D. Boe, J. Brundan, A. Chirvasitu, B. Cox, V. Dolgushev, C.M. Drupieski, M.G. Eastwood, V. Futorny, D. Grantcharov, A. van Groningen, M. Goze, J.-S. Huang, A.V. Isaev, I. Kashuba, R.A. Martins, G. Mason, D. Miličić, D.K., Nakano, S.-H. Ng, B.J. Parshall, I. Penkov, C. Pillen, E. Remm, V. Serganova, M.P. Tuite, H.D. Van, J.F. Willenbring, T. Willwacher, C.B. Wright, G. Yamskulna, G. Zuckerman.

There are no comments for this item.

to post a comment.

Powered by Koha