Self-Dual Codes and Invariant Theory [electronic resource] / by Gabriele Nebe, Eric M. Rains, Neil J.A. Sloane.

By: Nebe, Gabriele [author.]
Contributor(s): Rains, Eric M [author.] | Sloane, Neil J.A [author.] | SpringerLink (Online service)
Material type: TextTextSeries: Algorithms and Computation in Mathematics: 17Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006Description: XXIV, 406 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783540307310Subject(s): Mathematics | Coding theory | Algebra | Group theory | Number theory | Quantum physics | Control engineering | Robotics | Mechatronics | Mathematics | Algebra | Coding and Information Theory | Group Theory and Generalizations | Control, Robotics, Mechatronics | Number Theory | Quantum PhysicsAdditional physical formats: Printed edition:: No titleDDC classification: 512 LOC classification: QA150-272Online resources: Click here to access online
Contents:
The Type of a Self-Dual Code -- Weight Enumerators and Important Types -- Closed Codes -- The Category Quad -- The Main Theorems -- Real and Complex Clifford Groups -- Classical Self-Dual Codes -- Further Examples of Self-Dual Codes -- Lattices -- Maximal Isotropic Codes and Lattices -- Extremal and Optimal Codes -- Enumeration of Self-Dual Codes -- Quantum Codes.
In: Springer eBooksSummary: One of the most remarkable and beautiful theorems in coding theory is Gleason's 1970 theorem about the weight enumerators of self-dual codes and their connections with invariant theory. In the past 35 years there have been hundreds of papers written about generalizations and applications of this theorem to different types of codes. This self-contained book develops a new theory which is powerful enough to include all the earlier generalizations. It is also in part an encyclopedia that gives a very extensive list of the different types of self-dual codes and their properties, including tables of the best codes that are presently known. Besides self-dual codes, the book also discusses two closely-related subjects, lattices and modular forms, and quantum error-correcting codes. This book, written by the leading experts in the subject, has no equivalent in the literature and will be of great interest to mathematicians, communication theorists, computer scientists and physicists.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

The Type of a Self-Dual Code -- Weight Enumerators and Important Types -- Closed Codes -- The Category Quad -- The Main Theorems -- Real and Complex Clifford Groups -- Classical Self-Dual Codes -- Further Examples of Self-Dual Codes -- Lattices -- Maximal Isotropic Codes and Lattices -- Extremal and Optimal Codes -- Enumeration of Self-Dual Codes -- Quantum Codes.

One of the most remarkable and beautiful theorems in coding theory is Gleason's 1970 theorem about the weight enumerators of self-dual codes and their connections with invariant theory. In the past 35 years there have been hundreds of papers written about generalizations and applications of this theorem to different types of codes. This self-contained book develops a new theory which is powerful enough to include all the earlier generalizations. It is also in part an encyclopedia that gives a very extensive list of the different types of self-dual codes and their properties, including tables of the best codes that are presently known. Besides self-dual codes, the book also discusses two closely-related subjects, lattices and modular forms, and quantum error-correcting codes. This book, written by the leading experts in the subject, has no equivalent in the literature and will be of great interest to mathematicians, communication theorists, computer scientists and physicists.

There are no comments for this item.

to post a comment.

Powered by Koha