Teoria delle Equazioni e Teoria di Galois [electronic resource] / by Stefania Gabelli.

By: Gabelli, Stefania [author.]
Contributor(s): SpringerLink (Online service)
Material type: TextTextSeries: UNITEXT: Publisher: Milano : Springer Milan : Imprint: Springer, 2008Description: XVII, 410 pagg. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9788847006195Subject(s): Mathematics | Algebra | Geometry | Number theory | Mathematics | Algebra | Geometry | Number TheoryAdditional physical formats: Printed edition:: No titleDDC classification: 512 LOC classification: QA150-272Online resources: Click here to access online
Contents:
Anelli Di Polinomi -- Anelli e campi: nozioni di base -- Anelli di polinomi -- Teoria Dei Campi -- Ampliamenti di campi -- Campi di spezzamento -- Ampliamenti algebrici -- Ampliamenti trascendenti -- La Corrispondenza Di Galois -- La corrispondenza di Galois -- Il gruppo di Galois di un polinomio -- Applicazioni -- Risolubilità per radicali delle equazioni polinomiali -- Il teorema fondamentale dell’algebra -- Costruzioni con riga e compasso -- Appendici -- Complementi di teoria dei gruppi -- La cardinalità di un insieme.
In: Springer eBooksSummary: L'algebra è nata come lo studio della risolubilità delle equazioni polinomiali e tale è essenzialmente rimasta fino a quando nel 1830 Evariste Galois - matematico geniale dalla vita breve e avventurosa - ha definitivamente risolto questo problema, ponendo allo stesso tempo le basi per la nascita dell'algebra moderna intesa come lo studio delle strutture algebriche. La Teoria di Galois classica viene oggi insegnata a vari livelli nell'ambito dei Corsi di Laurea in Matematica. Questo libro di testo è stato di conseguenza scritto per essere usato in modo flessibile. Alcune parti - come quella sulla Teoria dei Campi - possono essere utilizzate anche per corsi più avanzati di Algebra, Geometria e Teoria dei Numeri. Altri argomenti - quali ad esempio lo studio della risolubilità per radicali delle equazioni di grado basso o della costruibilità con riga e compasso delle figure piane - possono essere svolti in corsi di Matematiche Complementari per l'indirizzo didattico. Il volume contiene anche note storiche, molti esempi dettagliati ed esercizi.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

Anelli Di Polinomi -- Anelli e campi: nozioni di base -- Anelli di polinomi -- Teoria Dei Campi -- Ampliamenti di campi -- Campi di spezzamento -- Ampliamenti algebrici -- Ampliamenti trascendenti -- La Corrispondenza Di Galois -- La corrispondenza di Galois -- Il gruppo di Galois di un polinomio -- Applicazioni -- Risolubilità per radicali delle equazioni polinomiali -- Il teorema fondamentale dell’algebra -- Costruzioni con riga e compasso -- Appendici -- Complementi di teoria dei gruppi -- La cardinalità di un insieme.

L'algebra è nata come lo studio della risolubilità delle equazioni polinomiali e tale è essenzialmente rimasta fino a quando nel 1830 Evariste Galois - matematico geniale dalla vita breve e avventurosa - ha definitivamente risolto questo problema, ponendo allo stesso tempo le basi per la nascita dell'algebra moderna intesa come lo studio delle strutture algebriche. La Teoria di Galois classica viene oggi insegnata a vari livelli nell'ambito dei Corsi di Laurea in Matematica. Questo libro di testo è stato di conseguenza scritto per essere usato in modo flessibile. Alcune parti - come quella sulla Teoria dei Campi - possono essere utilizzate anche per corsi più avanzati di Algebra, Geometria e Teoria dei Numeri. Altri argomenti - quali ad esempio lo studio della risolubilità per radicali delle equazioni di grado basso o della costruibilità con riga e compasso delle figure piane - possono essere svolti in corsi di Matematiche Complementari per l'indirizzo didattico. Il volume contiene anche note storiche, molti esempi dettagliati ed esercizi.

There are no comments for this item.

to post a comment.

Powered by Koha