Estimating information flow in single cells

By: Cepeda Humerez, Sarah Anhala
Material type: TextTextPublisher: IST Austria 2019Online resources: Click here to access online
Contents:
Abstract
Acknowledgements
About the Author
List of Publications
List of Figures
1 Introduction
2 Background
3 Estimating information in time varying signals
4 Application of decoding-based information estimates ti single cell dynamical data
5 Crosstalk and kinetic proofreading in transcriptional regulation
6 Conclusions and future directions
Bibliography
Summary: Single cells are constantly interacting with their environment and each other, more importantly, the accurate perception of environmental cues is crucial for growth, survival, and reproduction. This communication between cells and their environment can be formalized in mathematical terms and be quantified as the information flow between them, as prescribed by information theory. The recent availability of real–time dynamical patterns of signaling molecules in single cells has allowed us to identify encoding about the identity of the environment in the time–series. However, efficient estimation of the information transmitted by these signals has been a data–analysis challenge due to the high dimensionality of the trajectories and the limited number of samples. In the first part of this thesis, we develop and evaluate decoding–based estimation methods to lower bound the mutual information and derive model–based precise information estimates for biological reaction networks governed by the chemical master equation. This is followed by applying the decoding-based methods to study the intracellular representation of extracellular changes in budding yeast, by observing the transient dynamics of nuclear translocation of 10 transcription factors in response to 3 stress conditions. Additionally, we apply these estimators to previously published data on ERK and Ca2+ signaling and yeast stress response. We argue that this single cell decoding-based measure of information provides an unbiased, quantitative and interpretable measure for the fidelity of biological signaling processes. Finally, in the last section, we deal with gene regulation which is primarily controlled by transcription factors (TFs) that bind to the DNA to activate gene expression. The possibility that non-cognate TFs activate transcription diminishes the accuracy of regulation with potentially disastrous effects for the cell. This ’crosstalk’ acts as a previously unexplored source of noise in biochemical networks and puts a strong constraint on their performance. To mitigate erroneous initiation we propose an out of equilibrium scheme that implements kinetic proofreading. We show that such architectures are favored over their equilibrium counterparts for complex organisms despite introducing noise in gene expression.
List(s) this item appears in: IST Austria Thesis
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Book Book Library
Available AT-ISTA#001899
Total holds: 0

Thesis

Abstract

Acknowledgements

About the Author

List of Publications

List of Figures

1 Introduction

2 Background

3 Estimating information in time varying signals

4 Application of decoding-based information estimates ti single cell dynamical data

5 Crosstalk and kinetic proofreading in transcriptional regulation

6 Conclusions and future directions

Bibliography

Single cells are constantly interacting with their environment and each other, more importantly, the accurate perception of environmental cues is crucial for growth, survival, and reproduction. This communication between cells and their environment can be formalized in mathematical terms and be quantified as the information flow between them, as prescribed by information theory. The recent availability of real–time dynamical patterns of signaling molecules in single cells has allowed us to identify encoding about the identity of the environment in the time–series. However, efficient estimation of the information transmitted by these signals has been a data–analysis challenge due to the high dimensionality of the trajectories and the limited number of samples. In the first part of this thesis, we develop and evaluate decoding–based estimation methods to lower bound the mutual information and derive model–based precise information estimates for biological reaction networks governed by the chemical master equation. This is followed by applying the decoding-based methods to study the intracellular representation of extracellular changes in budding yeast, by observing the transient dynamics of nuclear translocation of 10 transcription factors in response to 3 stress conditions. Additionally, we apply these estimators to previously published data on ERK and Ca2+ signaling and yeast stress response. We argue that this single cell decoding-based measure of information provides an unbiased, quantitative and interpretable measure for the fidelity of biological signaling processes. Finally, in the last section, we deal with gene regulation which is primarily controlled by transcription factors (TFs) that bind to the DNA to activate gene expression. The possibility that non-cognate TFs activate transcription diminishes the accuracy of regulation with potentially disastrous effects for the cell. This ’crosstalk’ acts as a previously unexplored source of noise in biochemical networks and puts a strong constraint on their performance. To mitigate erroneous initiation we propose an out of equilibrium scheme that implements kinetic proofreading. We show that such architectures are favored over their equilibrium counterparts for complex organisms despite introducing noise in gene expression.

There are no comments for this item.

to post a comment.

Powered by Koha