Identification of Nonlinear Systems Using Neural Networks and Polynomial Models [electronic resource] : A Block-Oriented Approach / by Andrzej Janczak.
Material type:
Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
![]() |
e-Library
Electronic Book@IST |
EBook | Available |
Introduction -- Neural network Wiener models -- Neural network Hammerstein models -- Polynomial Wiener models -- Polynomial Hammerstein models -- Applications.
This monograph systematically presents the existing identification methods of nonlinear systems using the block-oriented approach It surveys various known approaches to the identification of Wiener and Hammerstein systems which are applicable to both neural network and polynomial models. The book gives a comparative study of their gradient approximation accuracy, computational complexity, and convergence rates and furthermore presents some new and original methods concerning the model parameter adjusting with gradient-based techniques. "Identification of Nonlinear Systems Using Neural Networks and Polynomal Models" is useful for researchers, engineers and graduate students in nonlinear systems and neural network theory.