Amazon cover image
Image from Amazon.com

Control Configuration Selection for Multivariable Plants [electronic resource] / by A. Khaki-Sedigh, B. Moaveni.

By: Khaki-Sedigh, A [author.]Contributor(s): Moaveni, B [author.] | SpringerLink (Online service)Material type: TextTextSeries: Lecture Notes in Control and Information Sciences ; 391Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009Edition: 1st ed. 2009Description: XII, 236 p. 59 illus. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783642031939Subject(s): Control engineering | Applied mathematics | Engineering mathematics | Mechanical engineering | Robotics | Mechatronics | System theory | Industrial engineering | Production engineering | Control and Systems Theory | Applications of Mathematics | Mechanical Engineering | Control, Robotics, Mechatronics | Systems Theory, Control | Industrial and Production EngineeringAdditional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification: 629.8 LOC classification: TJ212-225Online resources: Click here to access online
Contents:
Control Configuration Selection of Linear Multivariable Plants: The RGA Approach -- Control Configuration of Linear Multivariable Plants: Advanced RGA Based Techniques -- Control Configuration Selection of Linear Multivariable Plants: SSV and Passivity Based Techniques -- Control Configuration Selection of Linear Multivariable Plants Based on the State-Space Models -- Control Configuration Selection of Nonlinear Multivariable Plants -- Control Configuration Selection of Linear Uncertain Multivariable Plants -- Appendix: Mathematical Models Used in Examples.
In: Springer eBooksSummary: Control of multivariable industrial plants and processes has been a challenging and fascinating task for researchers in this field. The analysis and design methodologies for multivariable plants can be categorized as centralized and decentralized design strategies. Despite the remarkable theoretical achievements in centralized multiva- able control, decentralized control is still widely used in many industrial plants. This trend in the beginning of the third millennium is still there and it will be with us for the foreseeable future. This is mainly because of the easy implementation, main- nance, tuning, and robust behavior in the face of fault and model uncertainties, which is reported with the vast number of running decentralized controllers in the industry. The main steps involved in employing decentralized controllers can be summarized as follows: • Control objectives formulation and plant modeling. • Control structure selection. • Controller design. • Simulation or pilot plant experiments and Implementation. Nearly all the textbooks on multivariable control theory deal only with the control system analysis and design. The important concept of control structure selection which is a key prerequisite for a successful industrial control strategy is almost unnoticed. Structure selection involves the following two main steps: • Inputs and outputs selection. • Control configuration selection or the input-output pairing problem. This book focuses on control configuration selection or the input-output pairing problem, which is defined as the procedure of selecting the appropriate input and output pair for the design of SISO (or block) controllers.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

Control Configuration Selection of Linear Multivariable Plants: The RGA Approach -- Control Configuration of Linear Multivariable Plants: Advanced RGA Based Techniques -- Control Configuration Selection of Linear Multivariable Plants: SSV and Passivity Based Techniques -- Control Configuration Selection of Linear Multivariable Plants Based on the State-Space Models -- Control Configuration Selection of Nonlinear Multivariable Plants -- Control Configuration Selection of Linear Uncertain Multivariable Plants -- Appendix: Mathematical Models Used in Examples.

Control of multivariable industrial plants and processes has been a challenging and fascinating task for researchers in this field. The analysis and design methodologies for multivariable plants can be categorized as centralized and decentralized design strategies. Despite the remarkable theoretical achievements in centralized multiva- able control, decentralized control is still widely used in many industrial plants. This trend in the beginning of the third millennium is still there and it will be with us for the foreseeable future. This is mainly because of the easy implementation, main- nance, tuning, and robust behavior in the face of fault and model uncertainties, which is reported with the vast number of running decentralized controllers in the industry. The main steps involved in employing decentralized controllers can be summarized as follows: • Control objectives formulation and plant modeling. • Control structure selection. • Controller design. • Simulation or pilot plant experiments and Implementation. Nearly all the textbooks on multivariable control theory deal only with the control system analysis and design. The important concept of control structure selection which is a key prerequisite for a successful industrial control strategy is almost unnoticed. Structure selection involves the following two main steps: • Inputs and outputs selection. • Control configuration selection or the input-output pairing problem. This book focuses on control configuration selection or the input-output pairing problem, which is defined as the procedure of selecting the appropriate input and output pair for the design of SISO (or block) controllers.

Powered by Koha