Integrable systems and applications : proceedings of a workshop, held at Oléron, France, June 20-24, 1988 / M. Balabane, P. Lochak, C. Sulem, eds.

Contributor(s): Balabane, M. (Mikhael), 1949- | Lochak, P. (Pierre) | Sulem, C. (Catherine), 1957-
Material type: TextTextSeries: Lecture notes in physics: 342.Publisher: Berlin ; New York : Springer-Verlag, ©1989Description: 1 online resource (vii, 342 pages) : illustrationsContent type: text Media type: computer Carrier type: online resourceISBN: 9783540467144; 3540467149Subject(s): Differential equations, Partial -- Congresses | Nonlinear theories -- Congresses | Hamiltonian systems -- Congresses | Solitons -- Congresses | Differential equations, Partial | Hamiltonian systems | Nonlinear theories | Solitons | Integrables System | Kongress | Nichtlineares System | Mathematische Physik | Nichtlineares DifferentialgleichungssystemGenre/Form: Electronic books. | Conference papers and proceedings. Additional physical formats: Print version:: Integrable systems and applications.DDC classification: 515/.353 LOC classification: QA377 | .I54 1989Online resources: Click here to access online
Contents:
Global solutions to non linear Dirac equations in Minkowski space -- Statistical mechanics of the NLS models and their avatars -- Asymptotic behavior of solutions and universal attractors for a system of nonlinear hyperbolic equations -- Solitons in two dimensions -- Nonlinear wave propagation through a random medium and soliton tunneling -- Trace formulae and singular spectra for the Schrödinger operator -- Hunting of the quarton -- Nekhoroshev's theorem and particle channeling in crystals -- Linearized maps for the Davey-Stewartson I equation -- On the role of nonlinearities in classical electrodynamics -- Upper bounds on the Lyapunov exponents for dissipative perturbations of infinite dimensional Hamiltonian systems -- The Cauchy problem for the generalized Korteweg-de-Vries equation -- Effective stability in Hamiltonian systems in the light of Nekhoroshev's theorem -- Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system -- On numerical chaos in the nonlinear Schrödinger equation -- Singular solutions of the cubic Schrödinger equation -- Hamiltonian deformations and optical fibers -- The Josephson fluxon mechanics -- Real lattices modelled by the nonlinear Schrödinger equation and its generalizations -- Modulation of trapped waves giving approximate two-dimensional solitions -- Solvable nonlinear equations as concrete realizations of the same abstract algebra -- Properties of solutions of dispersive equations -- Multichannel nonlinear scattering theory for nonintegrable equations -- On the linear stability of solitary waves in Hamiltonian systems with symmetry -- Nonlinear Schrödinger equations with magnetic field effect: Existence and stability of solitary waves.
Action note: digitized 2010 committed to preserveSummary: In this volume nonlinear systems related to integrable systems are studied. Lectures cover such topics as the application of integrable systems to the description of natural phenomena, the elaboration of perturbation theories, and the statistical mechanics of ensembles of objects obeying integrable equations. The more physical lectures center largely around the three paradigmatic equations: Korteweg de Vries, Sine-Gordon and Nonlinear Schrdinger, especially the latter. These have long been of great mathematical interest, and also exhibit a "universality" which places them among the most frequently encountered integrable equations in the description of physical systems. Tidal waves, optical fibers and laser beams are among the topics discussed. Lectures are also devoted to multidimensional solitons, integrability of Hamiltonian systems of ODEs and dissipative systems of PDEs.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

Includes bibliographical references.

In this volume nonlinear systems related to integrable systems are studied. Lectures cover such topics as the application of integrable systems to the description of natural phenomena, the elaboration of perturbation theories, and the statistical mechanics of ensembles of objects obeying integrable equations. The more physical lectures center largely around the three paradigmatic equations: Korteweg de Vries, Sine-Gordon and Nonlinear Schrdinger, especially the latter. These have long been of great mathematical interest, and also exhibit a "universality" which places them among the most frequently encountered integrable equations in the description of physical systems. Tidal waves, optical fibers and laser beams are among the topics discussed. Lectures are also devoted to multidimensional solitons, integrability of Hamiltonian systems of ODEs and dissipative systems of PDEs.

Use copy Restrictions unspecified star MiAaHDL

Electronic reproduction. [Place of publication not identified] : HathiTrust Digital Library, 2010. MiAaHDL

Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. MiAaHDL

http://purl.oclc.org/DLF/benchrepro0212

digitized 2010 HathiTrust Digital Library committed to preserve pda MiAaHDL

Print version record.

Global solutions to non linear Dirac equations in Minkowski space -- Statistical mechanics of the NLS models and their avatars -- Asymptotic behavior of solutions and universal attractors for a system of nonlinear hyperbolic equations -- Solitons in two dimensions -- Nonlinear wave propagation through a random medium and soliton tunneling -- Trace formulae and singular spectra for the Schrödinger operator -- Hunting of the quarton -- Nekhoroshev's theorem and particle channeling in crystals -- Linearized maps for the Davey-Stewartson I equation -- On the role of nonlinearities in classical electrodynamics -- Upper bounds on the Lyapunov exponents for dissipative perturbations of infinite dimensional Hamiltonian systems -- The Cauchy problem for the generalized Korteweg-de-Vries equation -- Effective stability in Hamiltonian systems in the light of Nekhoroshev's theorem -- Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system -- On numerical chaos in the nonlinear Schrödinger equation -- Singular solutions of the cubic Schrödinger equation -- Hamiltonian deformations and optical fibers -- The Josephson fluxon mechanics -- Real lattices modelled by the nonlinear Schrödinger equation and its generalizations -- Modulation of trapped waves giving approximate two-dimensional solitions -- Solvable nonlinear equations as concrete realizations of the same abstract algebra -- Properties of solutions of dispersive equations -- Multichannel nonlinear scattering theory for nonintegrable equations -- On the linear stability of solitary waves in Hamiltonian systems with symmetry -- Nonlinear Schrödinger equations with magnetic field effect: Existence and stability of solitary waves.

There are no comments for this item.

to post a comment.

Powered by Koha