Data science from scratch : first principles with Python

By: Grus, Joel (Software engineer) [author.]
Material type: TextTextPublisher: Sebastopol, CA : O'Reilly Media, [2019]Edition: Second editionDescription: xvii, 384 pages : illustrations ; 24 cmContent type: text Media type: unmediated Carrier type: volumeISBN: 9781492041139; 1492041130Subject(s): Python (Computer program language) | Database management | Data structures (Computer science) | Data mining | Data mining -- Mathematics | Data mining | Data structures (Computer science) | Database management | Python (Computer program language)DDC classification: 005.75/65 LOC classification: QA76.73.P98 | G78 2019
Contents:
Introduction -- A crash course in Python -- Visualizing data -- Linear algebra -- Statistics -- Probability -- Hypothesis and inference -- Gradient descent -- Getting data -- Working with data -- Machine learning -- k-Nearest neighbors -- Naive bayes -- Simple linear regression -- Multiple regression -- Logistic regression -- Decision trees -- Neural networks -- Deep learning -- Clustering -- Natural language processing -- Network analysis -- Recommender systems -- Databases and SQL -- MapReduce -- Data ethics -- Go forth and do data science.
List(s) this item appears in: New arrivals July 2020
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Book Book Library
005 (Browse shelf) Available AT-ISTA#002082
Total holds: 0

Includes bibliographical references and index.

Introduction -- A crash course in Python -- Visualizing data -- Linear algebra -- Statistics -- Probability -- Hypothesis and inference -- Gradient descent -- Getting data -- Working with data -- Machine learning -- k-Nearest neighbors -- Naive bayes -- Simple linear regression -- Multiple regression -- Logistic regression -- Decision trees -- Neural networks -- Deep learning -- Clustering -- Natural language processing -- Network analysis -- Recommender systems -- Databases and SQL -- MapReduce -- Data ethics -- Go forth and do data science.

There are no comments for this item.

to post a comment.

Powered by Koha