Subspace, latent structure and feature selection : Statistical and Optimization Perspectives Workshop, SLSFS 2005, Bohinj, Slovenia, February 23-25, 2005 ; revised selected papers / Craig Saunders [and others] (eds.).
Material type:
Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
![]() |
e-Library
Electronic Book@IST |
EBook | Available |
Includes bibliographical references and author index.
"Many of the papers in this proceedings volume were presented at the PASCAL Workshop entitled Subspace, Latent Structure and Feature Selection Techniques: Statistical and Optimization Perspectives which took place in Bohinj, Slovenia during February, 23-25 2005."
Print version record.
Use copy Restrictions unspecified star MiAaHDL
Electronic reproduction. [Place of publication not identified] : HathiTrust Digital Library, 2010. MiAaHDL
Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. MiAaHDL
http://purl.oclc.org/DLF/benchrepro0212
digitized 2010 HathiTrust Digital Library committed to preserve pda MiAaHDL
Invited Contributions -- Discrete Component Analysis -- Overview and Recent Advances in Partial Least Squares -- Random Projection, Margins, Kernels, and Feature-Selection -- Some Aspects of Latent Structure Analysis -- Feature Selection for Dimensionality Reduction -- Contributed Papers -- Auxiliary Variational Information Maximization for Dimensionality Reduction -- Constructing Visual Models with a Latent Space Approach -- Is Feature Selection Still Necessary? -- Class-Specific Subspace Discriminant Analysis for High-Dimensional Data -- Incorporating Constraints and Prior Knowledge into Factorization Algorithms -- An Application to 3D Recovery -- A Simple Feature Extraction for High Dimensional Image Representations -- Identifying Feature Relevance Using a Random Forest -- Generalization Bounds for Subspace Selection and Hyperbolic PCA -- Less Biased Measurement of Feature Selection Benefits.
English.