Amazon cover image
Image from Amazon.com

Knowledge discovery in inductive databases : 4th international workshop, KDID 2005, Porto, Portugal, October 3, 2005 : revised selected and invited papers / Francesco Bonchi, Jean-François Boulicaut (eds.).

By: KDID 2005 (2005 : Porto, Portugal)Contributor(s): Bonchi, Francesco | Boulicaut, Jean-FrançoisMaterial type: TextTextSeries: Serienbezeichnung | Lecture notes in computer science ; 3933.Publication details: Berlin ; New York : Springer, ©2006. Description: 1 online resource (viii, 250 pages) : illustrationsContent type: text Media type: computer Carrier type: online resourceISBN: 9783540332930; 3540332936; 3540332928; 9783540332923Other title: KDID 2005Subject(s): Database management -- Congresses | Database searching -- Congresses | Data mining -- Congresses | Bases de données -- Gestion -- Congrès | Bases de données -- Interrogation -- Congrès | Exploration de données (Informatique) -- Congrès | COMPUTERS -- Database Management -- General | Database searching | Data mining | Bases de données -- Gestion | Bases de données -- Interrogation | Exploration de données (Informatique) | Database management | Informatique | Data mining | Database management | Database searching | computerwetenschappen | computer sciences | kunstmatige intelligentie | artificial intelligence | databasebeheer | database management | Information and Communication Technology (General) | Informatie- en communicatietechnologie (algemeen)Genre/Form: Electronic books. | Conference papers and proceedings. Additional physical formats: Print version:: Knowledge discovery in inductive databases.DDC classification: 005.7565 LOC classification: QA76.9.D3 | K43 2005ebOther classification: TP311. 13-532 Online resources: Click here to access online
Contents:
Invited Papers -- Data Mining in Inductive Databases -- Mining Databases and Data Streams with Query Languages and Rules -- Contributed Papers -- Memory-Aware Frequent k-Itemset Mining -- Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data -- Experiment Databases: A Novel Methodology for Experimental Research -- Quick Inclusion-Exclusion -- Towards Mining Frequent Queries in Star Schemes -- Inductive Databases in the Relational Model: The Data as the Bridge -- Transaction Databases, Frequent Itemsets, and Their Condensed Representations -- Multi-class Correlated Pattern Mining -- Shaping SQL-Based Frequent Pattern Mining Algorithms -- Exploiting Virtual Patterns for Automatically Pruning the Search Space -- Constraint Based Induction of Multi-objective Regression Trees -- Learning Predictive Clustering Rules.
Summary: "The 4th International Workshop on Knowledge Discovery in Inductive Databases (KDID 2005) was held in Porto, Portugal, on October 3, 2005 ..."
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

Includes bibliographical references and index.

"The 4th International Workshop on Knowledge Discovery in Inductive Databases (KDID 2005) was held in Porto, Portugal, on October 3, 2005 ..."

Print version record.

Invited Papers -- Data Mining in Inductive Databases -- Mining Databases and Data Streams with Query Languages and Rules -- Contributed Papers -- Memory-Aware Frequent k-Itemset Mining -- Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data -- Experiment Databases: A Novel Methodology for Experimental Research -- Quick Inclusion-Exclusion -- Towards Mining Frequent Queries in Star Schemes -- Inductive Databases in the Relational Model: The Data as the Bridge -- Transaction Databases, Frequent Itemsets, and Their Condensed Representations -- Multi-class Correlated Pattern Mining -- Shaping SQL-Based Frequent Pattern Mining Algorithms -- Exploiting Virtual Patterns for Automatically Pruning the Search Space -- Constraint Based Induction of Multi-objective Regression Trees -- Learning Predictive Clustering Rules.

Powered by Koha