# Differential geometrical methods in mathematical physics : proceedings of the conferences held at Aix-en-Provence, September 3-7, 1979 and Salamanca, September 10-14, 1979 / edited by P.L. Garcia, A. Pérez-Rendón, and J.M. Souriau.

##### Contributor(s): García Pérez, Pedro Luis | Pérez-Rendón, A | Souriau, J.-M. (Jean-Marie) | Centre national de la recherche scientifique (France) | Universidad de Salamanca. Facultad de Ciencias

Material type: TextLanguage: English, French Series: Lecture notes in mathematics (Springer-Verlag): 836.Publisher: Berlin ; New York : Springer-Verlag, 1980Description: 1 online resource (xii, 538 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9783540384052; 3540384057Subject(s): Geometry, Differential -- Congresses | Mathematical physics -- Congresses | Géométrie différentielle -- Congrès | Physique mathématique -- Congrès | Geometry, Differential | Mathematical physicsGenre/Form: Electronic books. | Conference papers and proceedings. Additional physical formats: Print version:: Differential geometrical methods in mathematical physics.DDC classification: 516.36 LOC classification: QA3 | .L28 no. 836 | QC20.7.D52Other classification: PD 30 | 53-06 | 55Rxx Online resources: Click here to access onlineItem type | Current location | Collection | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|

eBook |
e-Library
Electronic Book@IST |
EBook | Available |

Includes bibliographical references.

Use copy Restrictions unspecified star MiAaHDL

Electronic reproduction. [Place of publication not identified] : HathiTrust Digital Library, 2010. MiAaHDL

Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. MiAaHDL

http://purl.oclc.org/DLF/benchrepro0212

digitized 2010 HathiTrust Digital Library committed to preserve pda MiAaHDL

Print version record.

Configuration spaces of identical particles -- The geometrical meaning and globalization of the Hamilton-Jacobi method -- The Euler-Lagrange resolution -- On the prequantum description of spinning particles in an external gauge field -- Classical action, the wu-yang phase factor and prequantization -- Groupes differentiels -- Representations that remain irreducible on parabolic subgroups -- Non-positive polarizations and half-forms -- Connections on symplectic manifolds and geometric quantization -- Geometric aspects of the feynman integral -- Relativistic quantum theory in complex spacetime -- Existence et equivalence de deformations associatives associees a une variete symplectique -- A new symplectic structure of field theory -- Conformal structures and connections -- Equilibrium configurations of fluids in general relativity -- Quaternionic and supersymmetric? -- models -- Supergravity as the gauge theory of supersymmetry -- Hypergravities -- Preface -- Preface -- Morse theory and the yang-mills equations -- Reduction of the yang mills equations -- Tangent structure of Yang-Mills equations and hodge theory -- Classification of gauge fields and group representations -- Gauge asthenodynamics (SU(2/1)) (classical discussion) -- Spinors on fibre bundles and their use in invariant models -- Glueing broken symmetries together -- Deformations and quantization -- Stability theory and quantization -- Presymplectic manifolds and the quantization of relativistic particle systems -- Geometric quantisation for singular lagrangians -- Electron scattering on magnetic monopoles -- The metaplectic representation, weyl operators and spectral theory -- Supergravity: A unique self-interacting theory -- General relativity as a gauge theory -- On a purely affine formulation of general relativity -- A fibre bundle description of coupled gravitational and gauge fields -- Homogenous symplectic formulation of field dynamics and the poincaré-cartan form -- Spectral sequences and the inverse problem of the calculus of variations -- Geodesic fields in the calculus of variations of multiple integrals depending on derivatives of higher order -- Separability structures on riemannian manifolds.

There are no comments for this item.