Directed Polymers in Random Environments : École d'Été de Probabilités de Saint-Flour XLVI - 2016 / by Francis Comets.

By: Comets, Francis [author.]
Material type: TextTextSeries: Lecture Notes in Mathematics: 2175.Publisher: Cham : Springer International Publishing : Imprint : Springer, 2017Description: 1 online resource (xvi, 199 pages) : 20 illustrations, 2 illustrations in colorContent type: text Media type: computer Carrier type: online resourceISBN: 9783319504872; 3319504878Subject(s): Mathematics | Probabilities | Science -- Mathematical Physics | Statistical physics | Mathematics -- Probability & Statistics -- General | Probability & statistics | Mathematics | ProbabilitiesGenre/Form: Electronic books. Additional physical formats: Printed edition:: No titleDDC classification: 519.2 LOC classification: QA273.A1-274.9QA274-274.9Online resources: Click here to access online
Contents:
1 Introduction -- 2 Thermodynamics and Phase Transition -- 3 The martingale approach and the L2 region -- 4 Lattice versus tree -- 5 Semimartingale approach and localization transition -- 6 Log-Gamma polymer model -- 7 Kardar-Parisi-Zhang equation and universality -- 8 Variational formulas.
Summary: Analyzing the phase transition from diffusive to localized behavior in a model of directed polymers in a random environment, this volume places particular emphasis on the localization phenomenon. The main question is: What does the path of a random walk look like if rewards and penalties are spatially randomly distributed? This model, which provides a simplified version of stretched elastic chains pinned by random impurities, has attracted much research activity, but it (and its relatives) still holds many secrets, especially in high dimensions. It has non-gaussian scaling limits and it belongs to the so-called KPZ universality class when the space is one-dimensional. Adopting a Gibbsian approach, using general and powerful tools from probability theory, the discrete model is studied in full generality. Presenting the state-of-the art from different perspectives, and written in the form of a first course on the subject, this monograph is aimed at researchers in probability or statistical physics, but is also accessible to masters and Ph. D. students.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

1 Introduction -- 2 Thermodynamics and Phase Transition -- 3 The martingale approach and the L2 region -- 4 Lattice versus tree -- 5 Semimartingale approach and localization transition -- 6 Log-Gamma polymer model -- 7 Kardar-Parisi-Zhang equation and universality -- 8 Variational formulas.

Analyzing the phase transition from diffusive to localized behavior in a model of directed polymers in a random environment, this volume places particular emphasis on the localization phenomenon. The main question is: What does the path of a random walk look like if rewards and penalties are spatially randomly distributed? This model, which provides a simplified version of stretched elastic chains pinned by random impurities, has attracted much research activity, but it (and its relatives) still holds many secrets, especially in high dimensions. It has non-gaussian scaling limits and it belongs to the so-called KPZ universality class when the space is one-dimensional. Adopting a Gibbsian approach, using general and powerful tools from probability theory, the discrete model is studied in full generality. Presenting the state-of-the art from different perspectives, and written in the form of a first course on the subject, this monograph is aimed at researchers in probability or statistical physics, but is also accessible to masters and Ph. D. students.

Includes bibliographical references and index.

There are no comments for this item.

to post a comment.

Powered by Koha