# Reconfiguration problems

##### By: Masarova, Zuzana

Material type: TextPublisher: IST Austria 2020ISBN: 978-3-99078-005-3Online resources: Click here to access onlineItem type | Current location | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|

Book | Library | Available | AT-ISTA#002098 |

Thesis

Abstract

Acknowledgments

List of Publications

List of Tables

List of Figures

1. Introduction to Reconfiguration Problems

2. Triangulation Reconfiguration and a Proof of the Orbit Conjecture for Edge-Labelled Triangulations

3. Token Swapping on Trees

4. Conclusions

Bibliography

This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph. For triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton. In the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars.

There are no comments for this item.