Towards a modulo p Langlands correspondence for GL₂ / [electronic resource] Christophe Breuil, Vytautas Paškūnas.

By: Breuil, Christophe
Contributor(s): Paskunas, Vytautas
Material type: TextTextSeries: Memoirs of the American Mathematical Society, v. 1016Publisher: Providence, R.I. : American Mathematical Society, c2011Description: 1 online resource (iii, 114 p.)ISBN: 9780821885253 (online)Subject(s): Representations of groups | Local fields (Algebra) | Galois theoryAdditional physical formats: Towards a modulo p Langlands correspondence for GL₂ /DDC classification: 512.7/4 LOC classification: QA176 | .B74 2011Online resources: Contents
Contents:
Chapter 1. Introduction Chapter 2. Representation theory of $\Gamma $ over $\bar {\mathbb {F}}_p$ I Chapter 3. Representation theory of $\Gamma $ over $\bar {\mathbb {F}}_p$ II Chapter 4. Representation theory of $\Gamma $ over $\bar {\mathbb {F}}_p$ III Chapter 5. Results on $K$-extensions Chapter 6. Hecke algebra Chapter 7. Computation of $\mathbb {R}^1 \mathcal {I}$ for principal series Chapter 8. Extensions of principal series Chapter 9. General theory of diagrams and representations of $\mathrm {GL}_2$ Chapter 10. Examples of diagrams Chapter 11. Generic Diamond weights Chapter 12. The unicity Lemma Chapter 13. Generic Diamond diagrams Chapter 14. The representations $D_0(\rho )$ and $D_1(\rho )$ Chapter 15. Decomposition of generic Diamond diagrams Chapter 16. Generic Diamond diagrams for $f \in \{1,2\}$ Chapter 17. The representation $R(\sigma )$ Chapter 18. The extension lemma Chapter 19. Generic Diamond diagrams and representations of $\mathrm {GL}_2$ Chapter 20. The case $F = \mathbb {Q}_p$
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

Available
Total holds: 0

"March 2012, volume 216, number 1016 (second of 4 numbers)."

Includes bibliographical references (p. 113-114).

Chapter 1. Introduction Chapter 2. Representation theory of $\Gamma $ over $\bar {\mathbb {F}}_p$ I Chapter 3. Representation theory of $\Gamma $ over $\bar {\mathbb {F}}_p$ II Chapter 4. Representation theory of $\Gamma $ over $\bar {\mathbb {F}}_p$ III Chapter 5. Results on $K$-extensions Chapter 6. Hecke algebra Chapter 7. Computation of $\mathbb {R}^1 \mathcal {I}$ for principal series Chapter 8. Extensions of principal series Chapter 9. General theory of diagrams and representations of $\mathrm {GL}_2$ Chapter 10. Examples of diagrams Chapter 11. Generic Diamond weights Chapter 12. The unicity Lemma Chapter 13. Generic Diamond diagrams Chapter 14. The representations $D_0(\rho )$ and $D_1(\rho )$ Chapter 15. Decomposition of generic Diamond diagrams Chapter 16. Generic Diamond diagrams for $f \in \{1,2\}$ Chapter 17. The representation $R(\sigma )$ Chapter 18. The extension lemma Chapter 19. Generic Diamond diagrams and representations of $\mathrm {GL}_2$ Chapter 20. The case $F = \mathbb {Q}_p$

Access is restricted to licensed institutions

Electronic reproduction. Providence, Rhode Island : American Mathematical Society. 2012

Mode of access : World Wide Web

Description based on print version record.

There are no comments for this item.

to post a comment.

Powered by Koha