Towards a modulo p Langlands correspondence for GL₂ / [electronic resource] Christophe Breuil, Vytautas Paškūnas.
By: Breuil, Christophe
Contributor(s): Paskunas, Vytautas
Material type: 



Item type | Current location | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|
![]() |
e-Library
Electronic Book@IST |
Available |
"March 2012, volume 216, number 1016 (second of 4 numbers)."
Includes bibliographical references (p. 113-114).
Chapter 1. Introduction Chapter 2. Representation theory of $\Gamma $ over $\bar {\mathbb {F}}_p$ I Chapter 3. Representation theory of $\Gamma $ over $\bar {\mathbb {F}}_p$ II Chapter 4. Representation theory of $\Gamma $ over $\bar {\mathbb {F}}_p$ III Chapter 5. Results on $K$-extensions Chapter 6. Hecke algebra Chapter 7. Computation of $\mathbb {R}^1 \mathcal {I}$ for principal series Chapter 8. Extensions of principal series Chapter 9. General theory of diagrams and representations of $\mathrm {GL}_2$ Chapter 10. Examples of diagrams Chapter 11. Generic Diamond weights Chapter 12. The unicity Lemma Chapter 13. Generic Diamond diagrams Chapter 14. The representations $D_0(\rho )$ and $D_1(\rho )$ Chapter 15. Decomposition of generic Diamond diagrams Chapter 16. Generic Diamond diagrams for $f \in \{1,2\}$ Chapter 17. The representation $R(\sigma )$ Chapter 18. The extension lemma Chapter 19. Generic Diamond diagrams and representations of $\mathrm {GL}_2$ Chapter 20. The case $F = \mathbb {Q}_p$
Access is restricted to licensed institutions
Electronic reproduction. Providence, Rhode Island : American Mathematical Society. 2012
Mode of access : World Wide Web
Description based on print version record.
There are no comments for this item.