Many-body physics with ultracold gases / edited by Christophe Salomon, Georgy V. Shlyapnikov and Leticia F. Cugliandolo.

By: (94th : Ecole d'été de physique théorique (Les Houches, Haute-Savoie, France) (94th : 2010)
Contributor(s): Salomon, C. (Christophe) [editor.] | Shlyapnikov, Georgy V [editor.] | Cugliandolo, L. F. (Leticia F.) [editor.]
Material type: TextTextSeries: Lecture Notes of the Les Houches Summer School: Publisher: Oxford : Oxford University Press, 2013Description: 1 online resource (xxvii, 345 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9780191638015; 0191638013; 1283733072; 9781283733076Subject(s): Cold gases -- Congresses | Nuclear physics -- Congresses | Condensed matter -- Congresses | Quantum theory -- Congresses | SCIENCE -- Energy | SCIENCE -- Mechanics -- General | SCIENCE -- Physics -- General | Cold gases | Condensed matter | Nuclear physics | Quantum theoryGenre/Form: Electronic books. | Electronic books. | Conference papers and proceedings. | Conference papers and proceedings. Additional physical formats: Print version:: Many-body physics with ultracold gases.DDC classification: 530.43 LOC classification: QC175.16.E6 | E36 2010ebOnline resources: Click here to access online
Contents:
Cover -- Contents -- List of participants -- 1 Strongly correlated bosons and fermions in optical lattices -- 1.1 Introduction -- 1.2 Optical lattices -- 1.3 The Bose�Hubbard model and the superfluid to Mott insulator transition -- 1.4 One-dimensional bosons and bosonization -- 1.5 From free fermions to Fermi liquids -- 1.6 Mott transition of fermions: three dimensions -- 1.7 One-dimensional fermions -- 1.8 Conclusion -- Acknowledgements -- References -- 2 Ultracold atoms in optical lattices -- 2.1 Overview -- 2.2 Introduction
2.3 Basics of optical lattices2.4 Detection methods -- 2.5 Bose� and Fermi�Hubbard models -- 2.6 Quantum magnetism with ultracold atoms in optical lattices -- 2.7 Single-site and single-atom resolved imaging of quantum gases in optical lattices -- References -- 3 The few-atom problem -- 3.1 Overview -- 3.2 The two-body problem and resonance width -- 3.3 Basics of the three-body problem with short-range interactions -- 3.4 The method of Skorniakov and Ter-Martirosian (STM) for few-body problems with resonant short-range interactions -- 3.5 Final remarks
AcknowledgementsReferences -- 4 Entanglement in many-body quantum systems -- 4.1 Introduction -- 4.2 Entanglement in many-body systems: pure states -- 4.3 Entanglement in many-body systems: mixed states -- 4.4 Entanglement and area laws -- 4.5 Tensor network states -- 4.6 Conclusions -- References -- 5 Quantum Hall states of ultracold atomic gases -- 5.1 Introduction -- 5.2 Rapid rotation -- 5.3 Optically induced gauge fields -- 5.4 Bose gases -- 5.5 Fermi gases -- 5.6 Summary -- Acknowledgements -- References -- 6 Theory of dipolar gases
6.1 The dipole�dipole interaction6.2 Dipolar Bose�Einstein condensates -- 6.3 Dipolar gases in optical lattices -- 6.4 Conclusions -- References -- 7 Ultracold polar molecules -- 7.1 Motivation and challenges -- 7.2 Making ultracold polar molecules -- 7.3 Characterizing the ultracold polar molecules -- 7.4 Ultracold chemistry, dipolar interactions, and reduced dimensionality -- Acknowledgements -- References -- 8 Ultracold Fermi gases as quantum simulators of condensed matter physics -- 8.1 Introduction -- 8.2 The non-interacting Fermi gas
8.3 Fermionic super.uidity and the BEC�BCS crossover8.4 Probing the fermionic superfluid -- 8.5 Conclusion -- References -- 9 Competing instabilities in quench experiments with ultracold Fermi gases near a Feshbach resonance -- 9.1 Overview -- 9.2 Introduction -- 9.3 Linear response and collective modes -- 9.4 Feshbach resonance via pseudo-potentials -- 9.5 Application to pairing susceptibility -- 9.6 More on Stoner instability -- 9.7 Discussion -- 9.8 Concluding remarks -- Acknowledgements -- References
Summary: This title provides authoritative tutorials on the most recent achievements in the field of quantum gases at the interface between atomic physics and quantum optics, condensed matter physics, nuclear and high-energy physics, non-linear physics and quantum information.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

Selected conference papers.

This title provides authoritative tutorials on the most recent achievements in the field of quantum gases at the interface between atomic physics and quantum optics, condensed matter physics, nuclear and high-energy physics, non-linear physics and quantum information.

Print version record.

Cover -- Contents -- List of participants -- 1 Strongly correlated bosons and fermions in optical lattices -- 1.1 Introduction -- 1.2 Optical lattices -- 1.3 The Bose�Hubbard model and the superfluid to Mott insulator transition -- 1.4 One-dimensional bosons and bosonization -- 1.5 From free fermions to Fermi liquids -- 1.6 Mott transition of fermions: three dimensions -- 1.7 One-dimensional fermions -- 1.8 Conclusion -- Acknowledgements -- References -- 2 Ultracold atoms in optical lattices -- 2.1 Overview -- 2.2 Introduction

2.3 Basics of optical lattices2.4 Detection methods -- 2.5 Bose� and Fermi�Hubbard models -- 2.6 Quantum magnetism with ultracold atoms in optical lattices -- 2.7 Single-site and single-atom resolved imaging of quantum gases in optical lattices -- References -- 3 The few-atom problem -- 3.1 Overview -- 3.2 The two-body problem and resonance width -- 3.3 Basics of the three-body problem with short-range interactions -- 3.4 The method of Skorniakov and Ter-Martirosian (STM) for few-body problems with resonant short-range interactions -- 3.5 Final remarks

AcknowledgementsReferences -- 4 Entanglement in many-body quantum systems -- 4.1 Introduction -- 4.2 Entanglement in many-body systems: pure states -- 4.3 Entanglement in many-body systems: mixed states -- 4.4 Entanglement and area laws -- 4.5 Tensor network states -- 4.6 Conclusions -- References -- 5 Quantum Hall states of ultracold atomic gases -- 5.1 Introduction -- 5.2 Rapid rotation -- 5.3 Optically induced gauge fields -- 5.4 Bose gases -- 5.5 Fermi gases -- 5.6 Summary -- Acknowledgements -- References -- 6 Theory of dipolar gases

6.1 The dipole�dipole interaction6.2 Dipolar Bose�Einstein condensates -- 6.3 Dipolar gases in optical lattices -- 6.4 Conclusions -- References -- 7 Ultracold polar molecules -- 7.1 Motivation and challenges -- 7.2 Making ultracold polar molecules -- 7.3 Characterizing the ultracold polar molecules -- 7.4 Ultracold chemistry, dipolar interactions, and reduced dimensionality -- Acknowledgements -- References -- 8 Ultracold Fermi gases as quantum simulators of condensed matter physics -- 8.1 Introduction -- 8.2 The non-interacting Fermi gas

8.3 Fermionic super.uidity and the BEC�BCS crossover8.4 Probing the fermionic superfluid -- 8.5 Conclusion -- References -- 9 Competing instabilities in quench experiments with ultracold Fermi gases near a Feshbach resonance -- 9.1 Overview -- 9.2 Introduction -- 9.3 Linear response and collective modes -- 9.4 Feshbach resonance via pseudo-potentials -- 9.5 Application to pairing susceptibility -- 9.6 More on Stoner instability -- 9.7 Discussion -- 9.8 Concluding remarks -- Acknowledgements -- References

Includes bibliographical references.

English.

There are no comments for this item.

to post a comment.

Powered by Koha