Amazon cover image
Image from Amazon.com

Machine learning and knowledge discovery in databases : European conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020 : proceedings. Part I / Frank Hutter, Kristian Kersting, Jefrey Lijffijt, Isabel Valera (ed.).

By: ECML PKDD (Conference) (2020 : Online)Contributor(s): Hutter, Frank [editor.] | Kersting, Kristian [editor.] | Lijffijt, Jefrey [editor.] | Valera, Isabel [editor.]Material type: TextTextSeries: Serienbezeichnung | Lecture notes in computer science. Lecture notes in artificial intelligence. | Lecture notes in computer science ; 12457.Publisher: Cham : Springer, [2021]Description: 1 online resource (l, 764 pages) : illustrations (chiefly color)Content type: text Media type: computer Carrier type: online resourceISBN: 9783030676582; 3030676587Other title: ECML PKDD 2020Subject(s): Machine learning -- Congresses | Data mining -- Congresses | Data structures (Computer science) | Application software | Optical data processing | Application software | Data mining | Data structures (Computer science) | Machine learning | Optical data processingGenre/Form: Electronic books. | Electronic books. | Conference papers and proceedings. | Conference papers and proceedings. Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification: 006.3/1 LOC classification: Q325.5Online resources: Click here to access online
Contents:
Pattern Mining -- clustering -- privacy and fairness -- (social) network analysis and computational social science -- dimensionality reduction and autoencoders -- domain adaptation -- sketching, sampling, and binary projections -- graphical models and causality -- (spatio- ) temporal data and recurrent neural networks -- collaborative filtering and matrix completion.
In: Springer Nature eBookSummary: The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic. The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio- ) temporal data and recurrent neural networks; collaborative filtering and matrix completion. Part II: deep learning optimization and theory; active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning. Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics. Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data. Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library

Electronic Book@IST

EBook Available
Total holds: 0

International conference proceedings.

Includes author index.

The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic. The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio- ) temporal data and recurrent neural networks; collaborative filtering and matrix completion. Part II: deep learning optimization and theory; active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning. Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics. Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data. Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.

Pattern Mining -- clustering -- privacy and fairness -- (social) network analysis and computational social science -- dimensionality reduction and autoencoders -- domain adaptation -- sketching, sampling, and binary projections -- graphical models and causality -- (spatio- ) temporal data and recurrent neural networks -- collaborative filtering and matrix completion.

Online resource; title from PDF title page (SpringerLink, viewed March 23, 2021).

Access restricted to registered UOB users with valid accounts.

Powered by Koha