Identification and characterization of the molecular machinery of auxin-dependent canalization during vasculature formation and regeneration

By: Hajny, Jakub
Material type: TextTextPublisher: IST Austria 2020Online resources: Click here to access online
Contents:
Abstract
Acknowlegments
List of Figures
List of Tables
List of Symbols/ Abbreviations
1 Introduction
2 WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity
3 CAMEL-CANAR receptor kinase module targets PIN-dependent transport during auxin canalization
4 Convergence of auxin and peptide signaling mediates auxin canalization
5 Appendix
Summary: Self-organization is a hallmark of plant development manifested e.g. by intricate leaf vein patterns, flexible formation of vasculature during organogenesis or its regeneration following wounding. Spontaneously arising channels transporting the phytohormone auxin, created by coordinated polar localizations of PIN-FORMED 1 (PIN1) auxin exporter, provide positional cues for these as well as other plant patterning processes. To find regulators acting downstream of auxin and the TIR1/AFB auxin signaling pathway essential for PIN1 coordinated polarization during auxin canalization, we performed microarray experiments. Besides the known components of general PIN polarity maintenance, such as PID and PIP5K kinases, we identified and characterized a new regulator of auxin canalization, the transcription factor WRKY DNA-BINDING PROTEIN 23 (WRKY23). Next, we designed a subsequent microarray experiment to further uncover other molecular players, downstream of auxin-TIR1/AFB-WRKY23 involved in the regulation of auxin-mediated PIN repolarization. We identified a novel and crucial part of the molecular machinery underlying auxin canalization. The auxin-regulated malectin-type receptor-like kinase CAMEL and the associated leucine-rich repeat receptor-like kinase CANAR target and directly phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated repolarization leading to defects in auxin transport, ultimately to leaf venation and vasculature regeneration defects. Our results describe the CAMEL-CANAR receptor complex, which is required for auxin feed-back on its own transport and thus for coordinated tissue polarization during auxin canalization.
List(s) this item appears in: IST Austria Thesis | New arrivals January 2022
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Book Book Library
Available AT-ISTA#002443
Total holds: 0

Thesis

Abstract

Acknowlegments

List of Figures

List of Tables

List of Symbols/ Abbreviations

1 Introduction

2 WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity

3 CAMEL-CANAR receptor kinase module targets PIN-dependent transport during auxin canalization

4 Convergence of auxin and peptide signaling mediates auxin canalization

5 Appendix

Self-organization is a hallmark of plant development manifested e.g. by intricate leaf vein patterns, flexible formation of vasculature during organogenesis or its regeneration following wounding. Spontaneously arising channels transporting the phytohormone auxin, created by coordinated polar localizations of PIN-FORMED 1 (PIN1) auxin exporter, provide positional cues for these as well as other plant patterning processes. To find regulators acting downstream of auxin and the TIR1/AFB auxin signaling pathway essential for PIN1 coordinated polarization during auxin canalization, we performed microarray experiments. Besides the known components of general PIN polarity maintenance, such as PID and PIP5K kinases, we identified and characterized a new regulator of auxin canalization, the transcription factor WRKY DNA-BINDING PROTEIN 23 (WRKY23). Next, we designed a subsequent microarray experiment to further uncover other molecular players, downstream of auxin-TIR1/AFB-WRKY23 involved in the regulation of auxin-mediated PIN repolarization. We identified a novel and crucial part of the molecular machinery underlying auxin canalization. The auxin-regulated malectin-type receptor-like kinase CAMEL and the associated leucine-rich repeat receptor-like kinase CANAR target and directly phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated repolarization leading to defects in auxin transport, ultimately to leaf venation and vasculature regeneration defects. Our results describe the CAMEL-CANAR receptor complex, which is required for auxin feed-back on its own transport and thus for coordinated tissue polarization during auxin canalization.

There are no comments for this item.

to post a comment.

Powered by Koha