04302nam a22005535i 4500
978-0-387-87712-9
DE-He213
20180115171426.0
cr nn 008mamaa
100427s2010 xxu| s |||| 0|eng d
9780387877129
978-0-387-87712-9
10.1007/978-0-387-87712-9
doi
QA370-380
PBKJ
bicssc
MAT007000
bisacsh
515.353
23
Chueshov, Igor.
author.
Von Karman Evolution Equations
[electronic resource] :
Well-posedness and Long Time Dynamics /
by Igor Chueshov, Irena Lasiecka.
New York, NY :
Springer New York,
2010.
XIV, 770 p. 10 illus.
online resource.
text
txt
rdacontent
computer
c
rdamedia
online resource
cr
rdacarrier
text file
PDF
rda
Springer Monographs in Mathematics,
1439-7382
Well-Posedness -- Preliminaries -- Evolutionary Equations -- Von Karman Models with Rotational Forces -- Von Karman Equations Without Rotational Inertia -- Thermoelastic Plates -- Structural Acoustic Problems and Plates in a Potential Flow of Gas -- Long-Time Dynamics -- Attractors for Evolutionary Equations -- Long-Time Behavior of Second-Order Abstract Equations -- Plates with Internal Damping -- Plates with Boundary Damping -- Thermoelasticity -- Composite Wave–Plate Systems -- Inertial Manifolds for von Karman Plate Equations.
The main goal of this book is to discuss and present results on well-posedness, regularity and long-time behavior of non-linear dynamic plate (shell) models described by von Karman evolutions. While many of the results presented here are the outgrowth of very recent studies by the authors, including a number of new original results here in print for the first time authors have provided a comprehensive and reasonably self-contained exposition of the general topic outlined above. This includes supplying all the functional analytic framework along with the function space theory as pertinent in the study of nonlinear plate models and more generally second order in time abstract evolution equations. While von Karman evolutions are the object under considerations, the methods developed transcendent this specific model and may be applied to many other equations, systems which exhibit similar hyperbolic or ultra-hyperbolic behavior (e.g. Berger's plate equations, Mindlin-Timoschenko systems, Kirchhoff-Boussinesq equations etc). In order to achieve a reasonable level of generality, the theoretical tools presented in the book are fairly abstract and tuned to general classes of second-order (in time) evolution equations, which are defined on abstract Banach spaces. The mathematical machinery needed to establish well-posedness of these dynamical systems, their regularity and long-time behavior is developed at the abstract level, where the needed hypotheses are axiomatized. This approach allows to look at von Karman evolutions as just one of the examples of a much broader class of evolutions. The generality of the approach and techniques developed are applicable (as shown in the book) to many other dynamics sharing certain rather general properties. Extensive background material provided in the monograph and self-contained presentation make this book suitable as a graduate textbook.
Mathematics.
Mathematical analysis.
Analysis (Mathematics).
Dynamics.
Ergodic theory.
Partial differential equations.
Applied mathematics.
Engineering mathematics.
Mathematics.
Partial Differential Equations.
Dynamical Systems and Ergodic Theory.
Analysis.
Applications of Mathematics.
Lasiecka, Irena.
author.
SpringerLink (Online service)
Springer eBooks
Printed edition:
9780387877112
Springer Monographs in Mathematics,
1439-7382
http://dx.doi.org/10.1007/978-0-387-87712-9
ZDB-2-SMA
369794
369794
0
0
0
0
EBook
elib
elib
2018-01-15
2018-01-15
2018-01-15
EBOOK