TY - BOOK
AU - Scoville,Nicholas A.
TI - Discrete Morse theory
T2 - Student mathematical library
SN - 9781470452988
AV - QA612.14 .S36 2019
U1 - 514/.72 23
PY - 2019///]
CY - Providence, Rhode Island
PB - American Mathematical Society
KW - Combinatorial topology
KW - Morse theory
KW - Homology theory
KW - Homotopy theory
KW - Algebraic topology -- Applied homological algebra and category theory [See also 18Gxx] -- Abstract complexes
KW - msc
KW - Global analysis, analysis on manifolds [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx] {For geometric integration theory, see 49Q15} -- Variational problems in infinite-dimensional spaces -- Abstr
KW - Manifolds and cell complexes {For complex manifolds, see 32Qxx} -- PL-topology -- General topology of complexes
KW - Manifolds and cell complexes {For complex manifolds, see 32Qxx} -- PL-topology -- Simple homotopy type, Whitehead torsion, Reidemeister-Franz torsion, etc. [See also 19B28]
N1 - Includes bibliographical references and index; What is discrete Morse theory? -- Simplifying complexes -- Discrete Morse theory -- Simplicial homology -- Main theorems of discrete Morse theory -- Discrete Morse theory and persistent homology -- Boolean functions and evasiveness -- The Morse complexes -- Morse homology -- Computations with discrete Morse theory -- Strong discrete Morse theory
ER -