TY - BOOK
AU - Arwini,Khadiga A.
AU - Dodson,C.T.J.
AU - Doig,A.J.
AU - Sampson,William W.
AU - Scharcanski,J.
AU - Felipussi,S.
TI - Information geometry: near randomness and near independence
T2 - Lecture notes in mathematics,
SN - 9783540693932
AV - QA276 .A78 2008eb
U1 - 510.08 20
PY - 2008///
CY - Berlin
PB - Springer
KW - Mathematical statistics
KW - Information theory
KW - Geometry, Differential
KW - Géométrie différentielle
KW - Statistique mathématique
KW - Théorie de l'information
KW - fast
KW - Electronic books
N1 - Includes bibliographical references (pages 235-246) and index; Mathematical statistics and information theory --; Introduction to Riemannian geometry --; Information geometry --; Information geometry of bivariate families --; Neighbourhoods of Poisson randomness, independence, and uniformity --; Cosmological voids and galactic clustering --; Amino acid clustering; with A.J. Doig --; Cryptographic attacks and signal clustering --; Stochastic fibre networks; with W.W. Sampson --; Stochastic porous media and hydrology; with J. Scharcanski and S. Felipussi --; Quantum chaology
N2 - Annotation This volume will be useful to practising scientists and students working in the application of statistical models to real materials or to processes with perturbations of a Poisson process, a uniform process, or a state of independence for a bivariate process. We use information geometry to provide a common differential geometric framework for a wide range of illustrative applications including amino acid sequence spacings in protein chains, cryptology studies, clustering of communications and galaxies, cosmological voids, coupled spatial statistics in stochastic fibre networks and stochastic porous media, quantum chaology. Introduction sections are provided to mathematical statistics, differential geometry and the information geometry of spaces of probability density functions
UR - https://link-springer-com.libraryproxy.ist.ac.at/10.1007/978-3-540-69393-2
ER -