TY - BOOK
AU - Neuenschwander,Daniel
TI - Probabilities on the Heisenberg group: limit theorems and Brownian motion
T2 - Lecture notes in mathematics,
SN - 9783540685906
AV - QA3QA387 .L28 no. 1630
U1 - 510 s519.2/6 20
PY - 1996///
CY - Berlin, New York
PB - Springer
KW - Nilpotent Lie groups
KW - Probability measures
KW - Limit theorems (Probability theory)
KW - Brownian motion processes
KW - Groupes de Lie nilpotents
KW - Mesures de probabilités
KW - Théorèmes limites (Théorie des probabilités)
KW - Processus de mouvement brownien
KW - fast
KW - Limiettheorema's
KW - gtt
KW - Distribuicoes (probabilidade)
KW - larpcal
KW - Processos markovianos
KW - Electronic books
N1 - Includes bibliographical references (pages 125-136) and index; 1. Probability theory on simply connected nilpotent Lie groups -- 2. Brownian motions on [actual symbol not reproducible] -- 3. Other limit theorems on [actual symbol not reproducible]
N2 - The Heisenberg group comes from quantum mechanics and is the simplest non-commutative Lie group. While it belongs to the class of simply connected nilpotent Lie groups, it turns out that its special structure yields many results which (up to now) have not carried over to this larger class. This book is a survey of probabilistic results on the Heisenberg group. The emphasis lies on limit theorems and their relation to Brownian motion. Besides classical probability tools, non-commutative Fourier analysis and functional analysis (operator semigroups) comes in. The book is intended for probabilists and analysts interested in Lie groups, but given the many applications of the Heisenberg group, it will also be useful for theoretical phycisists specialized in quantum mechanics and for engineers
UR - https://link-springer-com.libraryproxy.ist.ac.at/10.1007/BFb0094029
ER -