000 03968nam a22006015i 4500
001 978-0-8176-4479-6
003 DE-He213
005 20180115171433.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 _a9780817644796
_9978-0-8176-4479-6
024 7 _a10.1007/0-8176-4479-2
_2doi
050 4 _aQA641-670
072 7 _aPBMP
_2bicssc
072 7 _aMAT012030
_2bisacsh
082 0 4 _a516.36
_223
100 1 _aFels, Gregor.
_eauthor.
245 1 0 _aCycle Spaces of Flag Domains
_h[electronic resource] :
_bA Complex Geometric Viewpoint /
_cby Gregor Fels, Alan Huckleberry, Joseph A. Wolf.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2006.
300 _aXX, 339 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aProgress in Mathematics ;
_v245
505 0 _ato Flag Domain Theory -- Structure of Complex Flag Manifolds -- Real Group Orbits -- Orbit Structure for Hermitian Symmetric Spaces -- Open Orbits -- The Cycle Space of a Flag Domain -- Cycle Spaces as Universal Domains -- Universal Domains -- B-Invariant Hypersurfaces in MZ -- Orbit Duality via Momentum Geometry -- Schubert Slices in the Context of Duality -- Analysis of the Boundary of U -- Invariant Kobayashi-Hyperbolic Stein Domains -- Cycle Spaces of Lower-Dimensional Orbits -- Examples -- Analytic and Geometric Consequences -- The Double Fibration Transform -- Variation of Hodge Structure -- Cycles in the K3 Period Domain -- The Full Cycle Space -- Combinatorics of Normal Bundles of Base Cycles -- Methods for Computing H1(C; O) -- Classification for Simple with rank < rank -- Classification for rank = rank .
520 _aThis monograph, divided into four parts, presents a comprehensive treatment and systematic examination of cycle spaces of flag domains. Assuming only a basic familiarity with the concepts of Lie theory and geometry, this work presents a complete structure theory for these cycle spaces, as well as their applications to harmonic analysis and algebraic geometry. Key features: * Accessible to readers from a wide range of fields, with all the necessary background material provided for the nonspecialist * Many new results presented for the first time * Driven by numerous examples * The exposition is presented from the complex geometric viewpoint, but the methods, applications and much of the motivation also come from real and complex algebraic groups and their representations, as well as other areas of geometry * Comparisons with classical Barlet cycle spaces are given * Good bibliography and index Researchers and graduate students in differential geometry, complex analysis, harmonic analysis, representation theory, transformation groups, algebraic geometry, and areas of global geometric analysis will benefit from this work.
650 0 _aMathematics.
650 0 _aAlgebraic geometry.
650 0 _aTopological groups.
650 0 _aLie groups.
650 0 _aGlobal analysis (Mathematics).
650 0 _aManifolds (Mathematics).
650 0 _aFunctions of complex variables.
650 0 _aDifferential geometry.
650 0 _aQuantum physics.
650 1 4 _aMathematics.
650 2 4 _aDifferential Geometry.
650 2 4 _aTopological Groups, Lie Groups.
650 2 4 _aSeveral Complex Variables and Analytic Spaces.
650 2 4 _aGlobal Analysis and Analysis on Manifolds.
650 2 4 _aAlgebraic Geometry.
650 2 4 _aQuantum Physics.
700 1 _aHuckleberry, Alan.
_eauthor.
700 1 _aWolf, Joseph A.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780817643911
830 0 _aProgress in Mathematics ;
_v245
856 4 0 _uhttp://dx.doi.org/10.1007/0-8176-4479-2
912 _aZDB-2-SMA
999 _c369895
_d369895