000  03499cam a2200517Ia 4500  

001  ocn233810203  
003  OCoLC  
005  20200625171155.0  
006  m o d  
007  cr unu  
008  080713s1989 gw a ob 000 0 eng d  
040 
_aSPLNP _beng _epn _cSPLNP _dGW5XE _dOCLCQ _dGW5XE _dOCLCF _dOCLCQ _dUAB _dOCLCQ _dCANPU _dLEAUB _dOCLCQ 

020 
_a9783540468592 _q(electronic bk.) 

020 
_a3540468595 _q(electronic bk.) 

020  _z0387519165  
020  _z9780387519166  
029  1 
_aAU@ _b000057633747 

029  1 
_aNZ1 _b15297550 

035  _a(OCoLC)233810203  
050  4 
_aQC174.17.H55 _bB62 1989 

082  0  4 
_a530.1/2 _220 
049  _aMAIN  
100  1 
_aBöhm, Arno, _d1936 _99903 

245  1  0 
_aDirac Kets, Gamow Vectors, and Gel'fand triplets : _bthe rigged Hilbert space formulation of quantum mechanics : lectures in mathematical physics at the University of Texas at Austin / _cA. Bohm, M. Gadella ; edited by A. Bohm and J.D. Dollard. 
260 
_aBerlin ; _aNew York : _bSpringerVerlag, _c©1989. 

300 
_a1 online resource (vi, 119 pages) : _billustrations 

336 
_atext _btxt _2rdacontent 

337 
_acomputer _bc _2rdamedia 

338 
_aonline resource _bcr _2rdacarrier 

490  1 
_aLecture notes in physics, _x16166361 ; _v348 

504  _aIncludes bibliographical references.  
520  _aDirac's formalism of quantum mechanics was always praised for its elegance. This book introduces the student to its mathematical foundations and demonstrates its ease of applicability to problems in quantum physics. The book starts by describing in detail the concept of Gel'fand triplets and how one can make use of them to make the Dirac heuristic approach rigorous. The results are then deepened by giving the analytic tools, such as the Hardy class function and Hilbert and Mellin transforms, needed in applications to physical problems. Next, the RHS model for decaying states based on the concept of Gamow vectors is presented. Applications are given to physical theories of such phenomena as decaying states and resonances.  
588  0  _aPrint version record.  
505  0  _aI. The algebraic structure of the space of states  II. The topological structure of the space of states  III. The conjugate space of?  IV. Generalized eigenvectors and the nuclear spectral theorem  V.A remark concerning generalization  References on chapter I  II. The Moller wave operators  III. The Hardy class functions on a half plane  References for chapter II  I. Rigged Hilbert spaces of Hardy class functions  II. The spaces?+ and??  III. Functional for Ho and Hl  References for chapter III  I. The RHS model for decaying states  II. Dynamical semigroups  III. Virtual states  References for chapter IV.  
650  0 
_aHilbert space. _99904 

650  0 
_aQuantum theory. _91028 

650  7 
_aHilbert space. _2fast _0(OCoLC)fst00956785 _99904 

650  7 
_aQuantum theory. _2fast _0(OCoLC)fst01085128 _91028 

655  4 
_aElectronic books. _9396 

700  1 
_aGadella, M. _q(Manuel), _d1949 _99905 

700  1 
_aDollard, John D. _99906 

776  0  8 
_iPrint version:Böhm, Arno, 1936 _tDirac Kets, Gamow Vectors, and Gel'fand triplets. _dBerlin ; New York : SpringerVerlag, ©1989 _z0387519165 _w(DLC) 89028963 _w(OCoLC)20595295 
830  0 
_aLecture notes in physics ; _v348. _x16166361 _99907 

856  4  0  _uhttps://linkspringercom.libraryproxy.ist.ac.at/10.1007/3540519165 
994 
_a92 _bATIST 

999 
_c374921 _d374921 